Skip to main content

Advertisement

Log in

1H- and 31P-myocardial magnetic resonance spectroscopy in non-obstructive hypertrophic cardiomyopathy patients and competitive athletes

  • Cardiac radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The clinical differentiation between athlete’s heart and mild forms of non-obstructive hypertrophic cardiomyopathy (HCM) is crucial. We hypothesized that differences do exist between the myocardial metabolism of patients with non-obstructive HCM and competitive athletes (CAs). Our aim was to evaluate myocardial metabolism with 31P-MRS and 1H-MRS in HCM patients and CAs.

Materials and methods

After Ethics Committee approval, 15 CAs and 7 HCM patients were prospectively enrolled. They underwent a 1.5-T cardiac MR including electrocardiographically triggered cine images, single-voxel 1H-MRS and multivoxel 31P-MRS. 1H-MRS was performed after imaging using standard coil with the patient in the supine position; thereafter, 31P-MRS was performed using a dedicated coil, in the prone position. Data were reported as median and interquartile range. Mann–Whitney U test was used.

Results

In CAs, left ventricular mass index was 72 (66–83) g/m2, septal thickness 10 (10–11) mm, end diastolic volume index 95 (85–102) ml/m2, end systolic volume index 30 (28–32) ml/m2 and ejection fraction 68% (65–69%); in HCM patients, 81 (76–111) g/m2 (P = 0.052), 18 (15–21) mm (P = 0.003), 73 (58–76) ml/m2 (P = 0.029), 20 (16–34) ml/m2 (P = 0.274) and 68% (55–73%) (P = 1.000), respectively. At 1H-MRS, total lipids were 35 (0–183) arbitrary units (au) for CA and 763 (155–1994) au for HCM patients (P = 0.046). At 31P-MRS, PCr/γATP was 5 (4–6) au for CA and 4 (2–5) au for HCM patients (P = 0.230). Examination time was 20 min for imaging only, 5 min for 1H-MRS and 15 min for 31P-MRS.

Conclusions

We observed a significant increase of myocardial lipids, but a preserved PCr/γATP ratio in the metabolism of HCM patients compared with competitive CAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Charron P, Carrier L, Dubourg O et al (1997) Penetrance of familial hypertrophic cardiomyopathy. Genet Couns 8:107–114

    CAS  PubMed  Google Scholar 

  2. Maron BJ, Gardin JM, Flack JM et al (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92:785–789

    Article  CAS  PubMed  Google Scholar 

  3. Crilley JG, Boehm EA, Blair E et al (2003) Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 41:1776–1782

    Article  CAS  PubMed  Google Scholar 

  4. Van Driest SL, Ommen SR, Tajik AJ et al (2005) Sarcomeric genotyping in hypertrophic cardiomyopathy. Mayo Clin Proc 80:463–469. doi:10.1016/S0025-6196(11)63196-0

    Article  PubMed  Google Scholar 

  5. Wigle ED (2001) Cardiomyopathy: the diagnosis of hypertrophic cardiomyopathy. Heart 86:709–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lauschke J, Maisch B (2009) Athlete’s heart or hypertrophic cardiomyopathy? Clin Res Cardiol 98:80–88

    Article  CAS  PubMed  Google Scholar 

  7. Esposito A, De Cobelli F, Perseghin G et al (2009) Impaired left ventricular energy metabolism in patients with hypertrophic cardiomyopathy is related to the extension of fibrosis at delayed gadolinium-enhanced magnetic resonance imaging. Heart 95:228–233

    Article  CAS  PubMed  Google Scholar 

  8. Maron MS, Olivotto I, Zenovich AG et al (2006) Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation 114:2232–2239

    Article  PubMed  Google Scholar 

  9. Wight JN, Salem D (1995) Sudden cardiac death and the “athlete’s heart”. Arch Intern Med 155:1473–1480

    Article  PubMed  Google Scholar 

  10. Firoozi S, Sharma S, McKenna WJ (2003) Risk of competitive sport in young athletes with heart disease. Heart 89:710–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pelliccia A, Maron BJ, Spataro A et al (1991) The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med 324:295–301

    Article  CAS  PubMed  Google Scholar 

  12. Maron BJ, Pelliccia A, Spirito P (1995) Cardiac disease in young trained athletes. Insights into methods for distinguishing athlete’s heart from structural heart disease, with particular emphasis on hypertrophic cardiomyopathy. Circulation 91:1596–1601

    Article  CAS  PubMed  Google Scholar 

  13. De Cobelli F, Esposito A, Belloni E et al (2009) Delayed-enhanced cardiac MRI for differentiation of Fabry’s disease from symmetric hypertrophic cardiomyopathy. AJR Am J Roentgenol 192:97–102

    Article  Google Scholar 

  14. Sardanelli F, Quarenghi M (2006) MR spectroscopy of the heart. Radiol Med 111:1025–1034

    Article  CAS  PubMed  Google Scholar 

  15. Holloway CJ, Suttie J, Dass S, Neubauer S (2011) Clinical cardiac magnetic resonance spectroscopy. Prog Cardiovasc Dis 54:320–327. doi:10.1016/j.pcad.2011.08.002

    Article  PubMed  Google Scholar 

  16. Beyerbacht HP, Vliegen HW, Lamb HJ et al (1996) Phosphorus magnetic resonance spectroscopy of the human heart: current status and clinical implications. Eur Heart J 17:1158–1166

    Article  CAS  PubMed  Google Scholar 

  17. Lodi R, Rajagopalan B, Blamire AM et al (2004) Abnormal cardiac energetics in patients carrying the A3243G mtDNA mutation measured in vivo using phosphorus MR spectroscopy. Biochim Biophys Acta 1657:146–150

    Article  CAS  PubMed  Google Scholar 

  18. van Ewijk PA, Schrauwen-Hinderling VB, Bekkers SCAM et al (2015) MRS: a noninvasive window into cardiac metabolism. NMR Biomed 28:747–766. doi:10.1002/nbm.3320

    Article  PubMed  Google Scholar 

  19. Bottomley PA, Weiss RG (1998) Non-invasive magnetic-resonance detection of creatine depletion in non-viable infarcted myocardium. Lancet 351:714–718

    Article  CAS  PubMed  Google Scholar 

  20. Faller KME, Lygate CA, Neubauer S, Schneider JE (2013) 1H-MR spectroscopy for analysis of cardiac lipid and creatine metabolism. Heart Fail Rev 18:657–668

    Article  CAS  PubMed  Google Scholar 

  21. Nakae I, Mitsunami K, Omura T et al (2003) Proton magnetic resonance spectroscopy can detect creatine depletion associated with the progression of heart failure in cardiomyopathy. J Am Coll Cardiol 42:1587–1593

    Article  CAS  PubMed  Google Scholar 

  22. Ingwall JS (2009) Energy metabolism in heart failure and remodelling. Cardiovasc Res 81:412–419

    Article  CAS  PubMed  Google Scholar 

  23. Malavazos AE, Di Leo G, Secchi F et al (2010) Relation of echocardiographic epicardial fat thickness and myocardial fat. Am J Cardiol 105:1831–1835. doi:10.1016/j.amjcard.2010.01.368

    Article  PubMed  Google Scholar 

  24. van der Meer RW, Doornbos J, Kozerke S et al (2007) Metabolic imaging of myocardial triglyceride content: reproducibility of 1H MR spectroscopy with respiratory navigator gating in volunteers. Radiology 245:251–257. doi:10.1148/radiol.2451061904

    Article  PubMed  Google Scholar 

  25. Naressi A, Couturier C, Devos JM et al (2001) Java-based graphical user interface for the MRUI quantitation package. MAGMA 12:141–152

    Article  CAS  PubMed  Google Scholar 

  26. den Hollander JA, Evanochko WT, Pohost GM (1994) Observation of cardiac lipids in humans by localized 1H magnetic resonance spectroscopic imaging. Magn Reson Med 32:175–180

    Article  CAS  Google Scholar 

  27. Felblinger J, Jung B, Slotboom J et al (1999) Methods and reproducibility of cardiac/respiratory double-triggered (1)H-MR spectroscopy of the human heart. Magn Reson Med 42:903–910

    Article  CAS  PubMed  Google Scholar 

  28. Hansch A, Rzanny R, Heyne J-P et al (2005) Noninvasive measurements of cardiac high-energy phosphate metabolites in dilated cardiomyopathy by using 31P spectroscopic chemical shift imaging. Eur Radiol 15:319–323

    Article  CAS  PubMed  Google Scholar 

  29. Jung WI, Sieverding L, Breuer J et al (1998) 31P NMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy. Circulation 97:2536–2542

    Article  CAS  PubMed  Google Scholar 

  30. Sardanelli F, Di Leo G (2009) Biostatistics for radiologists: planning, performing, and writing a radiologic study. Biostat Radiol Plan Perform Writ Radiol Study. doi:10.1007/978-88-470-1133-5

    Google Scholar 

  31. Sai E, Shimada K, Yokoyama T et al (2015) Evaluation of myocardial triglyceride accumulation assessed on 1H-magnetic resonance spectroscopy in apparently healthy Japanese subjects. Intern Med 54:367–373. doi:10.2169/internalmedicine.54.3024

    Article  CAS  PubMed  Google Scholar 

  32. Elliott P, McKenna WJ (2004) Hypertrophic cardiomyopathy. Lancet 363:1881–1891. doi:10.1016/S0140-6736(04)16358-7

    Article  CAS  PubMed  Google Scholar 

  33. Maron BJ, Maron MS (1997) Hypertrophic cardiomyopathy. Lancet 350:127–133. doi:10.1016/S0140-6736(12)60397-3

    Article  CAS  PubMed  Google Scholar 

  34. Nelson MD, Victor RG, Szczepaniak EW et al (2013) Cardiac steatosis and left ventricular hypertrophy in patients with generalized lipodystrophy as determined by magnetic resonance spectroscopy and imaging. Am J Cardiol 112:1019–1024. doi:10.1016/j.amjcard.2013.05.036

    Article  PubMed  PubMed Central  Google Scholar 

  35. Utz W, Engeli S, Haufe S, Kast P, Hermsdorf M, Wiesner S, Pofahl M, Traber J, Luft FC, Boschmann M, Schulz-Menger J, Jordan J (2011) Myocardial steatosis, cardiac remodelling and fitness in insulin-sensitive and insulin-resistant obesewomen. Heart 97(19):1585–1589

  36. Schrauwen-Hinderling VB, Meex RCR, Hesselink MKC et al (2011) Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction. Cardiovasc Diabetol 10:47. doi:10.1186/1475-2840-10-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jonker JT, de Mol P, de Vries ST et al (2013) Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function. Radiology 269:434–442. doi:10.1148/radiol.13121631

    Article  PubMed  Google Scholar 

  38. Pluim BM, Lamb HJ, Kayser HW et al (1998) Functional and metabolic evaluation of the athlete’s heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation 97:666–672

    Article  CAS  PubMed  Google Scholar 

  39. Gutberlet M, Spors B, Grothoff M et al (2004) Comparison of different cardiac MRI sequences at 1.5 T/3.0 T with respect to signal-to-noise and contrast-to-noise ratios—initial experience. Rofo 176:801–808. doi:10.1055/s-2004-813220

    Article  CAS  PubMed  Google Scholar 

  40. Bottomley PA, Weiss RG (2001) Noninvasive localized MR quantification of creatine kinase metabolites in normal and infarcted canine myocardium. Radiology 219:411–418. doi:10.1148/radiology.219.2.r01ma39411

    Article  CAS  PubMed  Google Scholar 

  41. Sardanelli F, Fausto A, Di Leo G et al (2009) In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. Am J Roentgenol 192:1608–1617. doi:10.2214/AJR.07.3521

    Article  Google Scholar 

Download references

Acknowledgements

This research received no specific grants from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Alì.

Ethics declarations

Conflict of interest

F Secchi and G. Di Leo have been sponsored to congresses by Bracco Imaging SpA (Milan, Italy). F. Sardanelli is on the speaker’s bureau for Bracco Imaging SpA (Milan, Italy) and received research grants from Bayer Healthcare (Berlin, Germany).

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Secchi, F., Di Leo, G., Petrini, M. et al. 1H- and 31P-myocardial magnetic resonance spectroscopy in non-obstructive hypertrophic cardiomyopathy patients and competitive athletes. Radiol med 122, 265–272 (2017). https://doi.org/10.1007/s11547-016-0718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-016-0718-2

Keywords

Navigation