Skip to main content
Log in

Magnetic resonance-guided focused ultrasound for the treatment of painful bone metastases: role of apparent diffusion coefficient (ADC) and dynamic contrast enhanced (DCE) MRI in the assessment of clinical outcome

  • MAGNETIC RESONANCE IMAGING
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

To assess the correlation between functional MRI, including ADC values obtained from DWI and DCE, and clinical outcome in patients with bone metastases treated with MRgFUS.

Methods and materials

Twenty-three patients with symptomatic bone metastases underwent MRgFUS treatment (ExAblate 2100 system InSightec) for pain palliation. All patients underwent clinical and imaging follow-up examinations at 1, 3 and 6 months after treatment. Visual Analog Scale (VAS) score was used to evaluate treatment efficacy in terms of pain palliation while ADC maps obtained by DWI sequences, and DCE data were used for quantitative assessment of treatment response at imaging. Spearman Correlation Coefficient Test was calculated to assess the correlation between VAS, ADC and DCE data.

Results

All treatments were performed successfully without adverse events. On the basis of VAS score, 16 (69.6 %) patients were classified as complete clinical responders, 6 (26.1 %) as partial responders and only one (4.3 %) was classified as a non-responder. The mean VAS score decreased from 7.09 ± 1.8 at baseline to 2.65 ± 1.36 at 1 month, 1.04 ± 1.91 at 3 months and 1.09 ± 1.99 at 6 months (p < 0.001). Baseline mean ADC value of treated lesions was 1.05 ± 0.15 mm2/s, increasing along follow-up period (1.57 ± 0.27 mm2/s 1st month; 1.49 ± 0.3 mm2/s 3rd month; 1.45 ± 0.32 mm2/s 6th month, p < 0.001). Non perfused volume (NPV) was 46.4 at 1 month, 45.2 at 3 months and 43.8 at 6 months. Spearman Coefficient demonstrated a statistically significant negative correlation between VAS and ADC values (ρ = −0.684; p = 0.03), but no significant correlation between VAS and NPV (ρ = 0.02216, p = 0.9305). Among other DCE data, Ktrans significantly changed in complete responders (3 months Ktrans = 2.14/min; −ΔKt = 52.65 % p < 0.01) and was not significantly different in partial responders (3 months Ktrans 0.042/min; ΔKt = 11.39 % p > 0.01).

Conclusion

In patients with painful bone metastases treated with MRgFUS, ADC and Ktrans variation observed in the ablated lesions correlate with VAS values and may play a role as objective imaging marker of treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liberman B, Gianfelice D, Inbar Y et al (2009) Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol 16(1):140–146

    Article  PubMed  Google Scholar 

  2. Hurwitz MD, Ghanouni P, Kanaev SV et al (2014) Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst 106(5). doi:10.1093/jnci/dju082

  3. Napoli A, Anzidei M, Marincola BC et al (2013) MR imaging-guided focused ultrasound for treatment of bone metastasis. Radiographics 33(6):1555–1568

    Article  PubMed  Google Scholar 

  4. Napoli A, Anzidei M, Marincola BC et al (2013) Primary pain palliation and local tumor control in bone metastases treated with magnetic resonance-guided focused ultrasound. Invest Radiol 48(6):351–358

    Article  PubMed  Google Scholar 

  5. Hamaoka T, Costelloe CM, Madewell JE et al (2010) Tumour response interpretation with new tumour response criteria vs the World Health Organisation criteria in patients with bone-only metastatic breast cancer. Br J Cancer 102(4):651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saip P, Tenekeci N, Aydiner A et al (1999) Response evaluation of bone metastases in breast cancer: value of magnetic resonance imaging. Cancer Invest 17(8):575–580

    Article  CAS  PubMed  Google Scholar 

  7. Wachenfeld I, Sanner G, Böttcher HD, Kollath J (1996) The remineralization of the vertebral metastases of breast carcinoma after radiotherapy. Strahlenther Onkol 172(6):332–341

    CAS  PubMed  Google Scholar 

  8. Vassiliou V, Andreopoulos D, Frangos S, Tselis N, Giannopoulou E, Lutz S (2011) Bone metastases: assessment of therapeutic response through radiological and nuclear medicine imaging modalities. Clin Oncol (R Coll Radiol) 23(9):632–645

    Article  CAS  Google Scholar 

  9. Gaeta M, Benedetto C, Minutoli F et al (2014) Use of diffusion-weighted, intravoxel incoherent motion, and dynamic contrast-enhanced MR imaging in the assessment of response to radiotherapy of lytic bone metastases from breast cancer. Acad Radiol 21(10):1286–1293

    Article  PubMed  Google Scholar 

  10. Sharma P, Karunanithi S, Singh Dhull V, Jain S, Bal C, Kumar R (2013) Prostate cancer with lytic bone metastases: 18F-fluorodeoxyglucose positron emission tomography-computed tomography for diagnosis and monitoring response to medical castration therapy. Indian J Nucl Med 28(3):178–179

    Article  PubMed  PubMed Central  Google Scholar 

  11. Correa PD, Shrimali RK, Han S, Rizwanullah M (2010) Positron emission tomography with computed tomography (PET-CT) to evaluate the response of bone metastases to non-surgical treatment. BMJ Case Rep 2010. doi:10.1136/bcr.11.2009.2457

  12. Fraioli F, Anzidei M, Serra G et al (1029) Whole-tumour CT-perfusion of unresectable lung cancer for the monitoring of anti-angiogenetic chemotherapy effects. Br J Radiol 2013(86):20120174

    Google Scholar 

  13. Low RN, Gurney J (2007) Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J Magn Reson Imaging 25(4):848–858

    Article  PubMed  Google Scholar 

  14. Li XR, Cheng LQ, Liu M et al (2012) DW-MRI ADC values can predict treatment response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Med Oncol 29(2):425–431

    Article  CAS  PubMed  Google Scholar 

  15. Musio D, De Felice F, Magnante AL et al (2013) Diffusion-weighted magnetic resonance application in response prediction before, during, and after neoadjuvant radiochemotherapy in primary rectal cancer carcinoma. Biomed Res Int 2013:740195

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yankeelov TE, Lepage M, Chakravarthy A, Broome EE, Niermann KJ, Kelley MC, Meszoely I, Mayer IA, Herman CR, McManus K, Price RR, Gore JC (2007) Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 25(1):1–13

    Article  PubMed  Google Scholar 

  17. Lecouvet FE, Larbi A, Pasoglou V, Omoumi P, Tombal B, Michoux N, Malghem J, Lhommel R, Vande Berg BC (2013) MRI for response assessment in metastatic bone disease. Eur Radiol 23(7):1986–1997

    Article  CAS  PubMed  Google Scholar 

  18. Napoli A, Mastantuono M, Cavallo Marincola B, Anzidei M, Zaccagna F, Moreschini O, Passariello R, Catalano C (2013) Osteoid osteoma: MR-guided focused ultrasound for entirely noninvasive treatment. Radiology 267(2):514–521

    Article  PubMed  Google Scholar 

  19. Wasserman J, De La Lande B, Pecking A, Brasseur L (2008) Pain and bone metastases. Prog Urol 18(suppl 7):S399–S409

    Article  Google Scholar 

  20. Padhani AR (2011) Bony metastases: assessing response to therapy with whole-bodydiffusion MRI. Cancer Imaging 11(1A):S129–S145

    Article  PubMed  PubMed Central  Google Scholar 

  21. Biffar A, Dietrich O, Sourbron S, Duerr HR, Reiser MF, Baur-Melnyk A (2010) Diffusion and perfusion imaging of bone marrow. Eur J Radiol 76:323–328

    Article  PubMed  Google Scholar 

  22. Vilanova JC, Baleato-Gonzalez S, Romero MJ, Carrascoso-Arranz J, Luna A (2016) Assessment of musculoskeletal malignancies with functional MR imaging. Magn Reson Imaging Clin N Am 24(1):239–259

    Article  PubMed  Google Scholar 

  23. Gaeta M, Benedetto C, Minutoli F, D’Angelo T, Amato E, Mazziotti S, Racchiusa S, Mormina E, Blandino A, Pergolizzi S (2014) Use of diffusion-weighted, intravoxel incoherent motion, and dynamic contrast-enhanced MR imaging in the assessment of response to radiotherapy of lytic bone metastases from breast cancer. Acad Radiol 21(10):1286–1293

    Article  PubMed  Google Scholar 

  24. Larbi A, Dallaudière B, Pasoglou V, Padhani A, Michoux N, Vande Berg BC (2016) Tombal B3, Lecouvet FE. Whole body MRI (WB-MRI) assessment of metastatic spread in prostate cancer: therapeutic perspectives on targeted management of oligometastatic disease. Prostate 76(11):1024–1033

    Article  PubMed  Google Scholar 

  25. Anzidei M, Napoli A, Zaccagna F, Cartocci G, Saba L, Menichini G, Cavallo Marincola B, Marotta E, Di Mare L, Catalano C, Passariello R (2011) Liver metastases from colorectal cancer treated with conventional and antiangiogenetic chemotherapy: evaluation with liver computed tomography perfusion and magnetic resonance diffusion-weighted imaging. J Comput Assist Tomogr 35(6):690–696

    Article  PubMed  Google Scholar 

  26. Geith T, Biffar A, Schmidt G, Sourbron S, Dietrich O, Reiser M, Baur-Melnyk A (2015) Physiological background of differences in quantitative diffusion-weighted magnetic resonance imaging between acute malignant and benign vertebral body fractures: correlation of apparent diffusion coefficient with quantitative perfusion magnetic resonance imaging using the 2-compartment exchange model. J Comput Assist Tomogr 39(5):643–648

    Article  PubMed  Google Scholar 

  27. Blackledge MD, Collins DJ, Tunariu N, Orton MR, Padhani AR, Leach MO, Koh DM (2014) Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One 9(4):e91779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M, Kajander S, Kemppainen J, Kauppila E, Auren J, Merisaari H, Saunavaara J, Noponen T, Minn H, Aronen HJ, Seppänen M (2016) Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5TMRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol 55(1):59–67

    Article  PubMed  Google Scholar 

  29. Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3(9):1457–1466

    CAS  PubMed  Google Scholar 

  30. Galons JP, Altbach MI, Paine-Murrieta GD, Taylor CW, Gillies RJ (1999) Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia 1(2):113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonekamp S, Corona-Villalobos CP, Kamel IR (2012) Oncologic applications of diffusion-weighted MRI in the body. J Magn Reson Imaging 35(2):257–279

    Article  PubMed  Google Scholar 

  32. Reischauer C, Froehlich JM, Koh DM et al (2010) Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps–initial observations. Radiology 257(2):523–531

    Article  PubMed  Google Scholar 

  33. Mardor Y, Pfeffer R, Spiegelmann R et al (2003) Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 21(6):1094–1100

    Article  PubMed  Google Scholar 

  34. Dzik-Jurasz A, Domenig C, George M, Wolber J, Padhani A, Brown G, Doran S (2002) Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 360(9329):307–308

    Article  PubMed  Google Scholar 

  35. DeVries AF, Kremser C, Hein PA et al (2003) Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 56(4):958–965

    Article  PubMed  Google Scholar 

  36. Theilmann RJ, Borders R, Trouard TP et al (2004) Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia 6(6):831–837

    Article  PubMed  PubMed Central  Google Scholar 

  37. Woodhams R, Matsunaga K, Iwabuchi K et al (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29(5):644–649

    Article  PubMed  Google Scholar 

  38. Biffar A, Sourbron S, Schmidt G, Ingrisch M, Dietrich O, Reiser MF, Baur-Melnyk A (2010) Measurement of perfusion and permeability from dynamic contrast-enhanced MRI in normal and pathological vertebral bone marrow. Magn Reson Med 64(1):115–124

    Article  PubMed  Google Scholar 

  39. O’Connor JP, Jackson A, Parker GJ, Jayson GC (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96(2):189–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bäuerle T, Merz M, Komljenovic D, Zwick S, Semmler W (2010) Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res 16(12):3215–3225

    Article  PubMed  Google Scholar 

  41. Zeng L, Chow E, Zhang L et al (2012) Comparison of pain response and functional interference outcomes between spinal and non-spinal bone metastases treated with palliative radiotherapy. Support Care Cancer 20(3):633–639

    Article  PubMed  Google Scholar 

  42. Matza LS, Fallowfield LJ, Chung KC, Currie BM, Van Brunt K, Patrick DL (2012) Patient-reported outcome instruments used to assess pain and functioning in studies of bisphosphonate treatment for bone metastases. Support Care Cancer 20(4):657–677

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schreuder SM, Lensing R, Stoker J, Bipat S (2015) Monitoring treatment response in patients undergoing chemoradiotherapy for locally advanced uterine cervical cancer by additional diffusion-weighted imaging: a systematic review. J Magn Reson Imaging 42(3):572–594

    Article  PubMed  Google Scholar 

  44. Reginelli A, Silvestro G, Fontanella G, Sangiovanni A, Conte M, Nuzzo I, Calvanese M, Traettino M, Ferraioli P, Grassi R, Manzo P, Cappabianca S (2016) Validation of DWI in assessment of radiotreated bone metastases in elderly patients. Int J Surg (pii: S1743-9191(16)30176-5)

  45. Smith NB, Temkin JM, Shapiro F, Hynynen K (2001) Thermal effects of focused ultrasound energy on bone tissue. Ultrasound Med Biol 27(10):1427–1433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Anzidei.

Ethics declarations

Ethical approval

Local Institutional Review Board approval.

Consent for publication

Informed consent was obtained for all patients.

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anzidei, M., Napoli, A., Sacconi, B. et al. Magnetic resonance-guided focused ultrasound for the treatment of painful bone metastases: role of apparent diffusion coefficient (ADC) and dynamic contrast enhanced (DCE) MRI in the assessment of clinical outcome. Radiol med 121, 905–915 (2016). https://doi.org/10.1007/s11547-016-0675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-016-0675-9

Keywords

Navigation