Skip to main content
Log in

Quantitative ultrasound at the phalanges in a cohort of monozygotic twins of different ages

  • MUSCULOSKELETAL RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The aim of our study was to evaluate bone quality by quantitative ultrasound (QUS) at the phalanges in 129 monozygotic twin couples, outlining the differences between growing subjects and adults.

Materials and methods

A total of 129 healthy monozygotic twin couples (42 of children under 18 years of age and 87 of adults) were studied by phalangeal QUS, measuring amplitude-dependent speed of sound (AD-SoS) and bone transmission time (BTT). Anthropometric data were also recorded.

Results

In children AD-SoS and BTT were positively correlated with age (r = 0.91, r = 0.91), height (r = 0.88, r = 0.90) and weight (r = 0.81, r = 0.87); in adults AD-SoS was negatively related to age (r = −0.36), AD-SoS and BTT were positively related to height (r = 0.37, r = 0.58). Absolute value differences between twins for AD-SoS and BTT were significantly higher in adult twins (25.9 ± 21.9 for AD-SoS and 0.08 ± 0.08 for BTT) than in children (14.5 ± 12.4 for AD-SoS and 0.05 ± 0.04 for BTT).

Conclusion

Differentiation in bone tissue quality in twins increases with age, probably reflecting lifestyle, personal habits, likely acting through epigenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. National Osteoporosis Foundation (1998) Osteoporosis: review of the evidence for prevention, diagnosis, and treatment and cost-effectiveness analysis. Osteoporos Int 8:S1–S88

    Article  Google Scholar 

  2. Riggs BL, Khosla S, Melton LJ III (1999) The assembly of the adult skeleton during growth and maturation: implications for senile osteoporosis. J Clin Invest 104:671–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dent CE (1973) Keynote address: problems in metabolic bone disease. In: Frame B, Parfitt MA, Duncan H (eds) Clinical aspects of metabolic bone disease. Excerpta Medica, Amsterdam, pp 1–6

    Google Scholar 

  4. Kreipe RE (1992) Bones of today, bones of tomorrow. Am J Dis Child 146:22–25

    CAS  PubMed  Google Scholar 

  5. Ralston SH (1997) The genetics of osteoporosis. Q J Med 90:247–251

    Article  CAS  Google Scholar 

  6. Andrew T, Mak YT, Reed P et al (2002) Linkage and association for bone mineral density and heel ultrasound measurements with a simple tandem repeat polymorphism near the osteocalcin gene in female dizygotic twins. Osteoporos Int 13:745–754

    Article  CAS  PubMed  Google Scholar 

  7. Brown MA, Haughton MA, Grant SF et al (2001) Genetic control of bone density and turnover: role of the collagen 1alpha1, estrogen receptor, and vitamin D receptor genes. J Bone Min Res 16:758–764

    Article  CAS  Google Scholar 

  8. Jouanny P, Guillemin F, Kuntz C et al (1995) Environmental and genetic factors affecting bone mass. Arthritis Rheum 38:61–67

    Article  CAS  PubMed  Google Scholar 

  9. Kannus P, Palvanen M, Kaprio J et al (1999) Genetic factors and osteoporotic fractures in elderly people: prospective 25 year follow up of a nationwide cohort of elderly Finnish twins. Br Med J 319:1334–1337

    Article  CAS  Google Scholar 

  10. Slemenda CW, Christian JC, Reed T et al (1992) Long-term bone loss in men: effects of genetic and environmental factors. Ann Intern Med 117:286–291

    Article  CAS  PubMed  Google Scholar 

  11. Ferrari S, Rizzoli R, Bonjour JP (1999) Genetic aspects of osteoporosis. Curr Opin Rheumatol 11:294–300

    Article  CAS  PubMed  Google Scholar 

  12. Bandirali M, Sconfienza LM, Aliprandi A et al (2014) In vivo differences among scan modes in bone mineral density measurement at dual-energy X-ray absorptiometry. Radiol Med 119:257–260

    Article  PubMed  Google Scholar 

  13. Guglielmi G, Grimston SK, Fischer KC, Pacifici R (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual X-ray absorptiometry compared with quantitative CT. Radiology 192:845–850

    Article  CAS  PubMed  Google Scholar 

  14. Pacifici R, Rupich RC, Griffin MG et al (1990) Dual energy radiography versus quantitative computed tomography for the diagnosis of osteoporosis. J Clin Endocrinol Metab 70:705–710

    Article  CAS  PubMed  Google Scholar 

  15. Barkmann R, Lüsse S, Stampa B et al (2000) Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo. Osteoporos Int 11:745–755

    Article  CAS  PubMed  Google Scholar 

  16. De Terlizzi F, Battista S, Cavani F et al (2000) Influence of bone tissue density and elasticity on ultrasound propagation: an in vitro study. J Bone Min Res 15:2458–2466

    Article  Google Scholar 

  17. Gluer CC, Wu CY, Jergas M et al (1994) Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 55:46–52

    Article  CAS  PubMed  Google Scholar 

  18. Hans D, Wu C, Njeh CF et al (1999) Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. Calcif Tissue Int 64:18–23

    Article  CAS  PubMed  Google Scholar 

  19. Hartl F, Tyndall A, Kraenzlin M et al (2002) Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: result of the Basel Osteoporosis Study. J Bone Min Res 17:321–330

    Article  CAS  Google Scholar 

  20. Henk C, Lu Y, Krestan C et al (2001) Quantitative US of the calcaneus cutoff levels for the distinction of healthy and osteoporotic individuals. Radiology 220:400–405

    Article  PubMed  Google Scholar 

  21. Guglielmi G, Cammisa M, De Serio A et al (1999) Phalangeal US velocity discriminates between normal and vertebrally fractured subjects. Eur Radiol 9:1632–1637

    Article  CAS  PubMed  Google Scholar 

  22. Guglielmi G, Njeh CF, de Terlizzi F et al (2003) Phalangeal quantitative ultrasound, phalangeal morphometric variables, and vertebral fracture discrimination. Calcif Tissue Int 72:469–477

    Article  CAS  PubMed  Google Scholar 

  23. Ventura V, Mauloni M, Mura M et al (1996) Ultrasound velocity changes at the proximal phalanxes of the hand in pre-, peri- and postmenopausal women. Osteoporos Int 6:368–375

    Article  CAS  PubMed  Google Scholar 

  24. Wüster C, Albanese C, De Aloysio D et al (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. J Bone Min Res 15:1603–1614

    Article  Google Scholar 

  25. Baroncelli GI, Federico G, Vignolo M et al (2006) The phalangeal quantitative ultrasound group. Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young adulthood according to gender, age, skeletal growth, and pubertal development. Bone 39:159–173

    Article  PubMed  Google Scholar 

  26. Caffarelli C, Gonnelli S, Tanzilli L et al (2012) The relationship between serum ghrelin and body composition with bone mineral density and QUS parameters in subjects with Rett syndrome. Bone 50:830–835

    Article  CAS  PubMed  Google Scholar 

  27. Wuster C, Albanese C, De Aloysio D, Duboeuf F, Gambacciani M, Gonnelli S, Gluer CC, Hans D, Joly J, Reginster JY, De Terlizzi F, Cadossi R, the Phalangeal Osteosonogrammetry Study Group (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. J Bone Min Res 15:1603–1614

    Article  CAS  Google Scholar 

  28. Bell JT, Spector TD (2011) A twin approach to unraveling epigenetics. Trends Genet 27:116–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Martino D, Loke YJ, Gordon L et al (2013) Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biol 14:R42

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wong CC, Meaburn EL, Ronald A et al (2013) Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry 4:1–9

    CAS  Google Scholar 

  31. Montagnani A, Gonnelli S, Cepollaro C et al (2000) Quantitative ultrasound at the phalanges in healthy Italian men. Osteoporos Int 11:499–504

    Article  CAS  PubMed  Google Scholar 

  32. Halaba ZP, Konstantynowicz J, Pluskiewicz W et al (2005) Comparison of phalangeal ultrasound and dual energy X-ray absorptiometry in healthy male and female adolescents. Ultrasound Med Biol 31:1617–1622

    Article  PubMed  Google Scholar 

  33. Drozdzowska B, Pluskiewicz W, de Terlizzi F (2002) Quantitative ultrasound at the hand phalanges in monozygotic twins: a preliminary report. Ultrasound Med Biol 28:1153–1156

    Article  PubMed  Google Scholar 

  34. Howard GM, Nguyen TV, Harris M et al (1998) Genetic and environmental contribution to the association between quantitative ultrasound and bone mineral density measurements: a twin study. J Bone Min Res 13:1318–1327

    Article  CAS  Google Scholar 

  35. Bell JT, Saffery R (2012) The value of twins in epigenetic epidemiology. Int J Epidemiol 41:140–150

    Article  PubMed  Google Scholar 

  36. Guglielmi G, de Terlizzi F, Torrente I et al (2005) Quantitative ultrasound of the hand phalanges in a cohort of monozygotic twins: influence of genetic and environmental factors. Skelet Radiol 34:727–735

    Article  CAS  Google Scholar 

Download references

Conflict of interest

Francesca De Terlizzi is employed by IGEA s.p.a Biophysics Lab. The other authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Guglielmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglielmi, G., De Terlizzi, F., Nasuto, M. et al. Quantitative ultrasound at the phalanges in a cohort of monozygotic twins of different ages. Radiol med 120, 277–282 (2015). https://doi.org/10.1007/s11547-014-0440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-014-0440-x

Keywords

Navigation