Skip to main content

Advertisement

Log in

3-Tesla MRI for the evaluation of myocardial viability: a comparative study with 1.5-Tesla MRI

RM a 3 Tesla per la valutazione della vitalità miocardica: studio comparativo con RM a 1,5 Tesla

  • Cardiac Radiology, Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose. We compared 3-Tesla (3-T) and 1.5-Tesla (1.5-T) cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability in nearly identical experimental conditions

Materials and methods. Thirty-five patients (mean age 63±11; 94.2% men) submitted to primary coronary angioplasty underwent both 3-T and 1.5-T cardiac MRI, which was considered the gold standard. Comparison was performed on the basis of the same viability imaging protocol, which included resting cine-MR [balanced fastfield echo (b-FFE) sequence] followed by contrastenhanced MR to evaluate perfusion and delayed enhancement (DE). We then performed functional index measurements and visual estimation of kinesis, perfusion and DE referring to a 5-point scale. Image quality was assessed on the basis of signal to noise ratio (SNR) and contrast to noise ratio (CNR)

Results. We found nonsignificant differences between the two scanners (p=NS) in measuring the functional and viability parameters. Myocardial SNR was significantly higher with 3-T MRI compared with 1.5-T MRI (61.3% gain). Even though a loss of CNR was recorded in b-FFE and in first-pass perfusion sequences (12.4% and 23.7%, respectively), on DE images, we quantified the increase of SNR and CNR of infarction of 387.8% and 330%, respectively

Conclusions. We found that 3-T MRI showed high concordance with 1.5-T MRI in the evaluation of functional and viability parameters and provided better evidence of damaged myocardium

Riassunto

Obiettivo. Confrontare la risonanza magnetica (RM) cardiaca a 3 Tesla (3 T) con quella a 1,5 Tesla (1,5 T) per la valutazione della vitalità miocardica in condizioni sperimentali essenzialmente identiche

Materiali e metodi. Trentacinque pazienti (età media di 63±11; 94,2% maschi) dopo essere stati sottoposti ad angioplastica primaria sono stati esaminati sia con RM cardiaca a 3 T che RM cardiaca a 1,5 T, che è stata considerata il gold standard. Il confronto è stato effettuato basandosi sullo stesso protocollo di imaging di vitalità che includeva: cine-MR a riposo (sequenza b-FFE) seguito da somministrazione di contrasto per la valutazione della perfusione e dell’enhancement tardivo (DE). È stata poi eseguita la misura degli indici funzionali e l’analisi visuale della cinesi, perfusione e dell’enhancement tardivo basandosi su una scala a 5 punti. La qualità di immagine è stata valutata sulla base del rapporto segnale-rumore (SNR) e del rapporto contrasto-rumore (CNR)

Risultati. Abbiamo trovato una differenza statisticamente non significativa tra le due apparecchiature RM (p=NS) nella misurazione dei parametri funzionali e di vitalità. Il SNR miocardico è risultato significativamente più alto con lo scanner a 3 T MR rispetto a quello a 1,5 T (61,3% guadagno). Nonostante sia stata apprezzata una perdita di CNR nelle sequenze b-FFE e di perfusione al primo passaggio (12,4% e 23,7% rispettivamente), nelle immagini di enhancement tardivo abbiamo quantificato un aumento del SNR e CNR del tessuto infartuato del 387,8% e 330% rispettivamente

Conclusioni. La RM a 3 Tesla ha dimostrato una alta concordanza con quella a 1,5 Tesla riguardo alla valutazione dei parametri funzionali e di vitalità con una più cospicua evidenza del miocardio danneggiato

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Pairoj Rerkpattanapipat P, Mazur W, Link KM, Hundley GW (2003) Assessment of cardiac function with MR imaging. Magn Reson Imaging Clin N Am 11:67–80

    Article  PubMed  Google Scholar 

  2. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  Google Scholar 

  3. Fassa AA, Urban P, Radovanovic D et al; AMIS Plus Investigators (2005) Trends in reperfusion therapy of ST segment elevation myocardial infarction in Switzerland: six year results from a nationwide registry. Heart 91:882–888

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klem I, Heitner JF, Shah DJ et al (2006) Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 47:1630–1638

    Article  PubMed  Google Scholar 

  5. Xu D, Henry RG, Mukherjee P et al (2004) Single-shot fast spin-echo diffusion tensor imaging of the brain and spine with head and phased array coils at 1.5 T and 3.0 T. Magn Reson Imaging 22:751–759

    Article  PubMed  Google Scholar 

  6. Al-Kwifi O, Emery DJ, Wilman AH (2002) Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging 20:181–187

    Article  PubMed  Google Scholar 

  7. McGee KP, Debbins JP, Boskamp EB et al (2004) Cardiac magnetic resonance parallel imaging at 3.0 Tesla: technical feasibility and advantages. J Magn Reson Imaging 19:291–297

    Article  PubMed  Google Scholar 

  8. Chuang ML, Hibberd MG, Salton CJ et al (2000) Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two-and threedimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 35:477–484

    Article  CAS  PubMed  Google Scholar 

  9. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  10. Wu E, Judd RM, Vargas JD et al (2001) Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357:21–28

    Article  CAS  PubMed  Google Scholar 

  11. Gerber TC, Fasseas P, Lennon RJ et al (2003) Clinical safety of magnetic resonance imaging early after coronary artery stent placement. Am Coll Cardiol 42:1295–1298

    Article  Google Scholar 

  12. Doherty NE 3rd, Seelos KC, Suzuki J et al (1992) Application of cine nuclear magnetic resonance imaging for sequential evaluation of response to angiotensin-converting enzyme inhibitor therapy in dilated cardiomyopathy. J Am Coll Cardiol 19:1294–1302

    Article  PubMed  Google Scholar 

  13. Lombardi M, Kvaerness J, Torheim G et al (2001) Relationship between function and perfusion early after acute myocardial infarction. Int J Cardiovasc Imaging 17:383–393

    Article  CAS  PubMed  Google Scholar 

  14. Penzkofer H, Wintersperger BJ, Knez A et al (1999) Assessment of myocardial perfusion using multisection first-pass MRI and color-coded parameter maps: a comparison to 99mTc sesta MIBI SPECT and systolic myocardial wall thickening analysis. Magn Reson Imaging 17:161–170

    Article  CAS  PubMed  Google Scholar 

  15. Kim RJ, Chen EL, Lima JAC, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326

    Article  CAS  PubMed  Google Scholar 

  16. Kaandorp TAM, Bax JJ, Schuijf JD et al (2004) Head-to-head comparison between contrast-enhanced magnetic resonance imaging and dobutamine magnetic resonance imaging in men with ischemic cardiomyopathy. Am J Cardiol 93:1461–1464

    Article  PubMed  Google Scholar 

  17. Schuijf JD, Kaandorp TAM, Lamb HJ et al (2004) Quantification of myocardial infarct size and transmurality by contrast-enhanced magnetic resonance imaging in men. Am J Cardiol 94:284–288

    Article  PubMed  Google Scholar 

  18. Kim RJ, Manning WJ (2004) Viability assessment by delayed enhancement cardiovascular magnetic resonance will low-dose dobutamine dull the shine? Circulation 109:2476–2479

    Article  PubMed  Google Scholar 

  19. Task Force of the European Society of Cardiology, in collaboration with the Association of European Paediatric Cardiologists (1998) The clinical role of magnetic resonance in cardiovascular disease. Eur Heart J 19:19–39

    Article  Google Scholar 

  20. Barkhausen J, Ruehm SG, Goyen M (2001) MR evaluation of LV function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269

    Article  CAS  PubMed  Google Scholar 

  21. Thiele H, Paetsch I, Schnackenburg B et al (2002) Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. J Cardiovasc Magn Reson 4:327–339

    Article  PubMed  Google Scholar 

  22. Michaely HJ, Nael K, Schoenberg SO et al (2006) Analysis of cardiac function-comparison between 1.5 Tesla and 3 Tesla cardiac cine magnetic resonance imaging: preliminary experience. Invest Radiol 41:133–140

    Article  PubMed  Google Scholar 

  23. Takahashi M, Hidemasa U, Hatabu H (2003) MR imaging at high magnetic fields. Eur J Radiol 46:45–52

    Article  PubMed  Google Scholar 

  24. Dougherty L, Connick TJ, Mizsei G (2001) Cardiac imaging at 4.0 Tesla. Magn Reson Med 45:176–178

    Article  CAS  PubMed  Google Scholar 

  25. Noeske R, Seifert F, Rhein KH, Rinneberg H (2000) Human cardiac imaging at 3 T using phased array coils. Magn Reson Med 44:978–982

    Article  CAS  PubMed  Google Scholar 

  26. Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232:635–652

    Article  PubMed  Google Scholar 

  27. McGee KP, Debbins JP, Boskamp EB et al (2004) Cardiac magnetic resonance parallel imaging at 3.0 Tesla: technical feasibility and advantages. J Magn Reson Imaging 19:291–297

    Article  PubMed  Google Scholar 

  28. Araoz PA, Glockner JF, McGee KP et al (2005) 3 Tesla MR imaging provides improved contrast in first-pass myocardial perfusion imaging over a range of gadolinium doses. J Cardiovasc Magn Reson 7:559–564

    Article  PubMed  Google Scholar 

  29. Gutberlet M, Noeske R, Schwinge K et al (2006) Comprehensive cardiac magnetic resonance imaging at 3 Tesla: feasibility and implicationd for clinical applications. Invest Radiol 41:154–167

    Article  PubMed  Google Scholar 

  30. Nakajima T, Oriuchi N, Tsushima Y et al (2004) Noninvasive determination of regional myocardial perfusion with first-pass magnetic resonance (MR) imaging. Acad Radiol 11:802–808

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ligabue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ligabue, G., Fiocchi, F., Ferraresi, S. et al. 3-Tesla MRI for the evaluation of myocardial viability: a comparative study with 1.5-Tesla MRI. Radiol med 113, 347–362 (2008). https://doi.org/10.1007/s11547-008-0256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-008-0256-7

Keywords

Parole chiave

Navigation