Skip to main content
Log in

Healthy Aspects of Potatoes as Part of the Human Diet

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

Potatoes are constituents of many diets. Nutritionalists identify several positive aspects but also discuss some adverse reactions. Therefore, healthiness of potato food has to be established taking into account new knowledge about natural constituents and food-borne substances. This paper presents data of three main areas: carbohydrates, toxins and antioxidants. The glycaemic behaviour of prepared potatoes has discredited the general understanding of potatoes as a healthy foodstuff. Boiled or steamed potatoes contain a large amount of rapidly available starch, but alongside genotype driven variability some preparation steps may also have an influence. The glycaemic load as the most relevant criterion for healthy subjects is relatively low. Potatoes may contain toxins, either natural (e.g. glycoalkaloids) or food-borne toxins (e.g. acrylamide). Minimization strategies have been developed for several potato dishes to reduce the intake substantially. Consumer handling particularly determines the specific level with those toxins. Antioxidants are a potent source of health promoting reactions in humans. They are present in potatoes, but specific concentrations are related to several aspects, e.g. plant growth, time interval after lifting, genotype, and kind of preparation. Again, the way in which consumers handle the potatoes is relevant. In summary, potatoes are very well suited for our modern diet, but consumers need advice to ensure that they are stored and prepared in the most appropriate way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • American Association of Cereal Chemists (AACC) (1993a) Approved methods of the AACC. Method 44-15a (Moisture–air oven method). AACC, St Paul, MN, The Association, St. Paul, MN

  • American Association of Cereal Chemists (AACC) (1993b) Approved methods of the AACC: Method 44–60 (Moisture–drying on quartz sand). The Association, St. Paul, MN, USA

  • Amrein TM, Bachmann S, Noti A, Biedermann M, Barbosa MF, Biedermann-Brem S, Grob K, Keiser A, Realini P, Escher F, Amado R (2003) Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems. J Agric Food Chem 51:5556–5560

    Article  PubMed  CAS  Google Scholar 

  • Bader M, Hecker H, Wrbitzky R (2005) Querschnittsstudie zur ernährungs- und tabakrauchbedingten Belastung mit Acrylamid. Dtsch Arztebl 102:A2640–A2643

    Google Scholar 

  • Baker EC, Rackis JJ, Mustakas GC, Strolle EO (1982) Development of a pilot-plant process for the preparation of a trypsin inhibitor-rich fraction from potatoes. Ind Eng Chem Prod Res Dev 21:80–82

    Article  CAS  Google Scholar 

  • Becalski A, Lau BPY, Lewis D, Seaman SW (2003) Acrylamide in foods: occurrence, sources, and modelling. J Agric Food Chem 51:802–808

    Article  PubMed  CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  • Biedermann M, Biedermann-Brem S, Noti A, Grob K (2002a) Methods for determining the potential of acrylamide formation and its elimination in raw materials for food preparation, such as potatoes. Mitt Geb Lebensmittelunters Hyg 93:653–667

    CAS  Google Scholar 

  • Biedermann M, Noti A, Biedermann-Brem S, Mozzetti V, Grob K (2002b) Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes. Mitt Geb Lebensmittelunters Hyg 93:668–687

    CAS  Google Scholar 

  • Blessington T, Hale AL, Scheuring DC, Miller JC (2005) Effects of cooking, storage and gamma irradiation on antioxidant activity in potato (Solanum tuberosum L.). Am J Potato Res 82:58

    Google Scholar 

  • Böhm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ (2002) Trolox equivalent antioxidant capacity of different geometrical isomers of alpha-carotene, beta-carotene, lycopene, and zeaxanthin. J Agric Food Chem 50:221–226

    Article  PubMed  CAS  Google Scholar 

  • Bömer A, Mattis H (1924) Der Solaningehalt de Kartoffeln. Z Unters Nahr Genussm Gebrauchsgegenstände 47:97–127

    Google Scholar 

  • Brand-Miller J (2007) The glycemic index as a measure of health and nutritional quality: an Australian perspective. Cereal Foods World 52:41–44

    Google Scholar 

  • Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TMS (2005) Glycaemic index methodology. Nutrition Res Rev 18:145–171

    Article  CAS  Google Scholar 

  • Bushway RJ (1987) Inhibition of acetyl cholinesterase by solanaceaeus glycoalkaloids and alkaloids. Am Potato J 64:409–413

    Article  Google Scholar 

  • Buyken AE, Kroke A (2006) Glykämischer Index von Kartoffeln—Mythos und Wirklichkeit. Ernährung im Focus 6:254–257

    Google Scholar 

  • Calleman CJ (1996) The metabolism and pharmacokinetics of acrylamide: implications for mechanisms of toxicity and human risk estimation. Drug Met Rev 28:527–590

    Article  CAS  Google Scholar 

  • Cao G, Booth SL, Sadowski JS, Prior RL (1998) Increase in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am J Clin Nutr 68:1081–1087

    PubMed  CAS  Google Scholar 

  • Cepl J, Zrust J (1996) Content of glycoalkaloids as affected by variety, nitrogen fertilization and mechanical damage of tubers. Abstracts of Conference Papers, Posters and Demonstrations of the 13th Triennial Conference of the EAPR, Veldhoven, 1996, pp. 532–533

  • Chaillou LL, Nazareno MA (2006) New method to determine antioxidant activity of polyphenols. J Agric Food Chem 54:8397–8402

    Article  PubMed  CAS  Google Scholar 

  • Chu Y, Chang C, Hsu H (2000) Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80:561–566

    Article  CAS  Google Scholar 

  • Chu YF, Sun J, Wu XZ, Liu RH (2002) Antioxidant and anti proliferative activities of common vegetables. J Agric Food Chem 50:6910–6916

    Article  PubMed  CAS  Google Scholar 

  • Cieslik E, Praznik W (1998) Changes of glycoalkaloid content in potato tubers of selected varieties during vegetation and storage. Polish J Food Nutr Sci 48:417–422

    Google Scholar 

  • Confederation of the food and drink industries of the EU (CIAA) (2006) CIAA acrylamide ‘toolbox’, URL: http://www.ciaa.be/documents/brochures/CIAA_Acrylamide_Toolbox_Oct2006.pdf (access 25-03-07), Brussels

  • Dale MFB, Griffiths DW, Bain H (1998) Effect of bruising on the total glycoalkaloid and chlorogenic acid content of potato tubers of five cultivars. J Sci Food Agric 77:499–505

    Article  CAS  Google Scholar 

  • Davey MW, van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzi IJJ (2000) Review: Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  • Dybing E (2007) Risk assessment of acrylamide. In: Eisenbrand G, Engel K-H, Grunow W, Hartwig A, Knorr D, Knudsen I, Schlatter J, Schreier P, Steinberg P, Vieths S (eds) Thermal processing of food: potential health benefits and risks. Wiley, Weinheim, pp 75–89

    Google Scholar 

  • Dybing E, Sanner T (2003) Risk assessment of acrylamide in foods. Toxicol Sci 75:7–15

    Article  PubMed  CAS  Google Scholar 

  • Engel KH, Gerstner G, Ross A (1998) Investigation of glycoalkaloids in potatoes as example for the principle of substantial equivalence. In: Novel foods regulation in the European Union, BGVV, Berlin, pp 197–209

  • Englyst HN, Kingman SM, Hudson GJ, Cummings JH (1996a) Measurement of resistant starch in vitro and in vivo. Brit J Nutr 75:749–755

    Article  PubMed  CAS  Google Scholar 

  • Englyst HN, Veenstra J, Hudson GJ (1996b) Measurement of rapidly available glucose (RAG) in plant foods: a potential in vitro predictor of the glycaemic response. Brit J Nutr 75:327–337

    Article  PubMed  CAS  Google Scholar 

  • Englyst KN, Hudson GJ, Englyst HN (2000) Starch analysis in food. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 4246–4262

    Google Scholar 

  • Englyst KN, Vinoy S, Englyst HN, Lang V (2003) Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Brit J Nutr 89:329–339

    Article  PubMed  CAS  Google Scholar 

  • European Commission DG Health and Consumer Protection (2007) Food contaminants—acrylamide. http://europa.eu.int/comm/food/food/chemicalsafety/contaminants/acrylamide_en.htm

  • FAO/WHO (2005) Joint FAO/WHO expert committee on food additives. 64th meeting. Report 8–17 Feb., Rome

  • Fernandes G, Velangi A, Wolever TMS (2005) Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc 105:557–562

    Article  PubMed  Google Scholar 

  • Foster-Powell K, Holt SHA, Brand-Miller JC (2002) International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 76:5–56

    PubMed  CAS  Google Scholar 

  • Friedman M, Kap-Rang L, Hyun-Jeong K, In-Seon L, Kozukue N (2005) Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J Agric Food Chem 53:6162–6169

    Article  PubMed  CAS  Google Scholar 

  • Goni I, Bravo L, Larrauri JA, Saura Calixto F (1997) Resistant starch in potatoes deep-fried in olive oils. Food Chem 59:269–272

    Article  CAS  Google Scholar 

  • Granda C, Moreira RG, Tichy SE (2004) Reduction of acrylamide formation in potato chips by low-temperature vacuum frying. J Food Sci 69:E405–E411

    Article  CAS  Google Scholar 

  • Granvogl M, Jezussek M, Köhler P, Schieberle P (2004) Quantitation of 3-aminopropionamide in potatoes—a minor but potent precursor in acrylamide formation. J Agric Food Chem 52:4751–4757

    Article  PubMed  CAS  Google Scholar 

  • Granvogl M, Schieberle P (2007) Quantification of 3-aminopropionamide in cocoa, coffee and cereal products. Eur Food Res Tech 225:857–863

    Article  CAS  Google Scholar 

  • Grob K, Biedermann M, Biedermann-Brem S, Noti A, Imhof D, Amrein T, Pfefferle A (2003) French fries with less than 100 μg/kg acrylamide. A collaboration between cooks and analysts. Eur Food Res Tech 217:185–194

    Article  CAS  Google Scholar 

  • Gromes R, Herrmann M-E (2008) Antioxidative Kapazität von Kartoffeln. Ernaehrungs-Umschau, pp 78–82

  • Gross J (1991) Pigments in vegetables: chlorophylls and carotenoids. Van Nostrand Reinhold, New York

    Google Scholar 

  • Gulliford MC, Bicknell EJ, Scarpello JH (1989) Differential effect of protein and fat ingestion on blood-glucose responses to high-glycemic-index and low-glycemic-index carbohydrates in noninsulin-dependent diabetic subjects. Am J Clin Nutr 50:773–777

    PubMed  CAS  Google Scholar 

  • Haase NU (1999) Glycoalkaloide in Kartoffelknollen. Kartoffelbau 50:44–47

    Google Scholar 

  • Haase NU (2006) The formation of acrylamide in potato products. In: Skog K, Alexander J (eds) Acrylamide and other hazardous compounds in heat-treated foods. Woodhead, Cambridge, pp 41–59

    Google Scholar 

  • Haase NU (2007) Minimization strategies: acrylamide. In: Eisenbrand G, Engel K-H, Grunow W, Hartwig A, Knorr D, Knudsen I, Schlatter J, Schreier P, Steinberg P, Vieths S (eds) Thermal processing of food: potential health benefits and risks. Wiley, Weinheim, pp 155–174

    Google Scholar 

  • Haase NU, Lindhauer MG (2005) Minimization strategies in potato food. In: Bund für Lebensmittelrecht und Lebensmittelkunde e.V.(BLL), Forschungskreis der Ernährungsindustrie e.V. (FEI) (ed) Development of new technologies to minimize acrylamide in food., URL: http://www.bll.de/download/themen/kontaminanten/acrylamid/acrylamid.pdf, Bonn, pp 45–56

  • Haase NU, Weber L (2003) Ascorbic acid losses during processing of French fries and potato chips. J Food Eng 56:207–209

    Article  Google Scholar 

  • Haase NU, Matthäus B, Vosmann K (2004) Aspects of acrylamide formation in potato crisps. J Appl Bot Food Qual 78:144–147

    CAS  Google Scholar 

  • Hale AL (2003) Screening potato genotypes for antioxidant activity, identification of the responsible compounds, and differentiating Russet Norkotah strains using AFLP and microsatellite marker analysis. PhD dissertation, Texas A&M University, College Station, TX. Cited in: Brown CR (eds) Antioxidants in Potato; Am J Potato Res 82 (2005):163–172

  • Halle I, Ihling M, Lahrsson-Wiederholt M, Klaffke H, Flachowsky G (2006) Carry-over of acrylamide from feed (heated potato product) to eggs and body tissues of laying hens. J Verbraucherschutz und Lebensmittelsicherheit 1:290–293

    Article  CAS  Google Scholar 

  • Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Fagertun Remberg S, Wold AB, Haffner K, Baugerod H, Frost Andersen L, Moskaug JO, Jacobs DJ, Blomhoff R (2002) A systematic screening of total antioxidants in dietary plants. J Nutr 132:461–471

    PubMed  CAS  Google Scholar 

  • Hauner H (2006) Glykämischer Index und glykämische Last: relevant für die Gesundheit. Aktuel Ernaehr Med 31:42–48

    Article  Google Scholar 

  • Hellenäs KE, Branzell C, Johnsson H, Slanina P (1995a) High-levels of glycoalkaloids in the established Swedish potato variety Magnum-Bonum. J Sci Food Agric 68:249–255

    Article  Google Scholar 

  • Hellenäs KE, Branzell C, Johnsson H, Slanina P (1995b) Glycoalkaloid content of early potato varieties. J Sci Food Agric 67:125–128

    Article  Google Scholar 

  • Jadhav SJ (1983) Naturally occurring toxic alkaloids in foods. CRC Crit Rev Toxicol 9:21–103

    Article  Google Scholar 

  • Jeannet-Peter N, Piletta-Zanin P-A, Hauser C (1999) Facial dermatitis, contact urticaria, rhinoconjunctivitis, and asthma induced by potato. Am J Contact Dermat 10:40–42

    Article  PubMed  CAS  Google Scholar 

  • Jenkins AL (2007) The glycemic index: looking back 25 years. Cereal Foods World 52:50–53

    CAS  Google Scholar 

  • Karkalas J (1985) An improved enzymatic method for the determination of native and modified starch. J Sci Food Agric 36:1019–1027

    Article  CAS  Google Scholar 

  • Kolbe H (1997) Einflußfaktoren auf die Inhaltsstoffe der Kartoffel. VII Vitamine. Kartoffelbau 48:34–39

    Google Scholar 

  • Lachman K, Hamouz K (2005) Red and purple coloured potatoes as a significant antioxidant source in human nutrition—a review. Plant, Soil Environ 51:477–482

    CAS  Google Scholar 

  • Lewis CE, Walker JRL, Lancaster JE, Sutton KH (1998) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: Coloured cultivars of Solanum tuberosum L. J Sci Food Agric 77:45–57

    Article  CAS  Google Scholar 

  • Lewis CE, Walker JRL, Lancaster JE (1999) Changes in anthocyanin, flavonoid and phenolic acid concentrations during development and storage of coloured potato (Solanum tuberosum L.) tubers. J Sci Food Agric 79:311–316

    Article  CAS  Google Scholar 

  • Lindenmeier M, Hofmann T (2004) Influence of baking conditions and precursor supplementation on the amounts of the antioxidant pronyl-L-lysine in bakery products. J Agric Food Chem 52:350–354

    Article  PubMed  CAS  Google Scholar 

  • Lisinska G, Leszczynski W (1989) Potato science and technology. Elsevier, London

    Google Scholar 

  • Lu WH, Haynes K, Wiley E, Clevidence B (2001) Carotenoid content and color in diploid potatoes. J Am Soc Hort Sci 126:722–726

    CAS  Google Scholar 

  • Ludwig DS (2000) Dietary glycemic index and obesity. J Nutr 130:280S–283S

    PubMed  CAS  Google Scholar 

  • Maga JA (1980) Potato glycoalkaloids. CRC Crit Rev Food Sci Nutr 12:371–405

    Article  CAS  Google Scholar 

  • Matthäus B, Haase NU, Vosmann K (2004) Factors effecting the concentration of acrylamide during deep-fat frying of potatoes. Eur J Lipid Sci Technol 106:793–801

    Article  CAS  Google Scholar 

  • Michaud DS, Fuchs CS, Liu SM, Willett WC, Colditz GA, Giovannucci E (2005) Dietary glycemic load, carbohydrate, sugar, and colorectal cancer risk in men and women. Cancer Epidemiol Biomarkers Prev 14:138–143

    Article  PubMed  CAS  Google Scholar 

  • Miller NJ, Sampson J, Candeias LP, Bramley PM, RiceEvans CA (1996) Antioxidant activities of carotenes and xanthophylls. Febs Lett 384:240–242

    Article  PubMed  CAS  Google Scholar 

  • Morris SC, Lee TH (1984) The toxicity and teratogenicity of Solanaceae glycoalkaloids, particularly those of the potato (Solanum tuberosum): a review. Food Technol Aust 36:118–124

    CAS  Google Scholar 

  • Mottram DS, Wedzicha BL, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419:448–449

    Article  PubMed  CAS  Google Scholar 

  • Mucci LA, Dickman PW, Steineck G, Adami HO, Augustsson K (2003) Dietary acrylamide and cancer of the large bowel, kidney, and bladder: absence of an association in a population-based study in Sweden. Br J Cancer 88:84–89

    Article  PubMed  CAS  Google Scholar 

  • Nesterenko S, Sink KC (2003) Carotenoid profiles of potato breeding lines and selected cultivars. HortScience 38:1173–1177

    CAS  Google Scholar 

  • Olesen PT, Olsen A, Frandsen H, Frederiksen K, Overvad K, Tjonneland A (2008) Acrylamide exposure and incidence of breast cancer among postmenopausal women in the Danish Diet, Cancer and Health study. Int J Cancer 122:2094–2100

    Article  PubMed  CAS  Google Scholar 

  • Olsson K (1996) Attempts to unveil potato clones disposed to stress-induced accumulation of glycoalkaloids in the field. EA. In: 13th Triennial Conference of the European Association for Potato Research (eds) Abstracts of Conference Papers, Posters and Demonstrations, European Association for Potato Research, Veldhoven, NL, pp 538–539

  • Parnell A, Bhuva VS, Bintcliffe EJB (1984) The glycoalkaloid content of potato varieties. J Natl Inst Agric Bot 16:535–542

    CAS  Google Scholar 

  • Pedreschi F, Moyano P (2005) Oil uptake and texture development in fried potato slices. J Food Eng 70:557–563

    Google Scholar 

  • Pelucchi C, Galeone C, Levi F, Negri E, Franceschi S, Talamini R, Bosetti CN, Giacosa A, La Vecchia C (2006) Dietary acrylamide and human cancer. Int J Cancer 118:467–471

    Article  PubMed  CAS  Google Scholar 

  • Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402

    Article  PubMed  CAS  Google Scholar 

  • Reyes LF, Cisneros-Zevallos L (2003) Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). J Agr Food Chem 51:5296–5300

    Article  CAS  Google Scholar 

  • Reyes LF, Miller JJ, Cisneros-Zevallos L (2005) Antioxidant capacity, anthocyanins and total phenolics in purple- and red-fleshed potato (Solanum tuberosum L.) genotypes. Am J Potato Res 82:271–277

    CAS  Google Scholar 

  • Roddick JG (1987) Antifungal activity of plant steroids. In: Fuller G, Nes WD (eds) Ecology and metabolism of plant lipids (ACS Symposium Series 325). American Chemical Society, Washington, DC, pp 286–303

    Google Scholar 

  • Roddick JG (1988) Synergistic interaction between potato glycoalkaloids solanine and chaconine in relation to destabilisation of cell membranes: ecological implications. J Chem Ecol 14:889–902

    Article  CAS  Google Scholar 

  • Rogozinska I, Wszelaczynska E, Wichrowska D (2005) Effect of bioelements (Mg, N, K) and herbicides on vitamin C content in potato tubers. Part 1: Vitamin C content in potato tubers immediately after harvest. J Elementol 10:999–1008

    Google Scholar 

  • Seppälä U, Alenius H, Turjanmaa K, Reunala T, Palosuo T, Kalkkinen N (1999) Identification of patatin as a novel allergen for children with positive skin prick test responses to raw potato. J Allergy Clin Immunol 103:165–171

    Article  PubMed  Google Scholar 

  • Sinden SL, Deahl KL, Aulenbach BB (1976) Effect of glycoalkaloids and phenolics on potato flavor. J Food Sci 41:520–523

    Article  CAS  Google Scholar 

  • Smith DB, Roddick JG, Jones JL (1996) Potato glycoalkaloids: some unanswered questions. Trends Food Sci Technol 7:126–131

    Article  CAS  Google Scholar 

  • Soh NL, Brand-Miller J (1999) The glycaemic index of potatoes: the effect of variety, cooking method and maturity. Eur J Clin Nutr 53:249–254

    Article  PubMed  CAS  Google Scholar 

  • Sowokinos JR, Preston DA (1988) Maintenance of potato processing quality by chemical maturity monitoring (CMM). Station Bulletin 586, University of Minnesota

  • Stadler RH, Robert F, Riediker S, Varga N, Davidek T, Devaud S, Goldmann T, Ha J (2004) In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J Agric Food Chem 52:5550–5558

    Article  PubMed  CAS  Google Scholar 

  • Taeymans D, Wood J, Ashby P, Blank I, Studer A, Stadler RH, Gonde P, van Eijck P, Lalljie S, Lingnert H, Lindblom M, Matissek R, Mueller D, Tallmadge D, O'Brien J, Thompson S, Silvani D, Whitmore T (2004) A review of acrylamide: an industry perspective on research, analysis, formation, and control. CRC Crit Rev Food Sci Nutr 44:323–347

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (1999) Integrated risk information system (IRIS) on acrylamide. National Center for Environmental Assessment, Office of Research and Development, Washington DC

    Google Scholar 

  • Wang H, Cao G, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44:701–705

    Article  CAS  Google Scholar 

  • Weber L, Putz B (1998) Vitamin-C in Kartoffeln. Kartoffelbau 49:278–281

    Google Scholar 

  • Weisshaar R, Gutsche B (2002) Formation of acrylamide in heated potato products - model experiments pointing to asparagine as precursor. Dtsch Lebensm-Rundsch 98:397–400

    CAS  Google Scholar 

  • Welch RW, Price RK, Lee AM, Strain JJ (2005) Uptake and antioxidant activity of oat and wheat phenolics in humans. In: ICC (eds) Cereals—the future challenge—book of abstracts, 15–15

  • WHO/FAO (2003) Nutrition, diet, and prevention of chronic diseases. WHO Technical Report Series 916. World Health Organization, Geneva

    Google Scholar 

  • Willett WC (2001) Eat, drink and be healthy: the Harvard Medical School guide to healthy eating. Simon & Schuster, New York

    Google Scholar 

  • Yaylayan VA, Wnorowski A, Locas CP (2003) Why asparagine needs carbohydrates to generate acrylamide. J Agric Food Chem 51:1753–1757

    Article  CAS  Google Scholar 

  • Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP, Villagran MD (2003) Acrylamide formation mechanism in heated foods. J Agric Food Chem 51:4782–4787

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. U. Haase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haase, N.U. Healthy Aspects of Potatoes as Part of the Human Diet. Potato Res. 51, 239–258 (2008). https://doi.org/10.1007/s11540-008-9111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-008-9111-4

Keywords

Navigation