Skip to main content

Advertisement

Log in

Cholesterol Regulation in Age-Related Macular Degeneration: A Framework for Mathematical Modelling of Drusen Biogenesis

  • Original Paper
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In age-related macular degeneration (AMD), there is, in common with many other age-related diseases, the need to distinguish between changes in the ageing eye that lead to disease and those changes that are considered part of a healthy, ageing eye. Various studies investigating the multitude of mechanisms involved in the aetiology of AMD exist within the field of ophthalmology and related medical fields, yet many aspects of it remain poorly understood and only a limited number of therapies are available. A recent study relates drusen’s topographically cellular characteristics to the neural retina’s metabolic needs and associated cholesterol involvement within the retina. In particular, there is a need to fully understand the maintenance of cholesterol homeostasis in the retina to prevent normal ageing processes from being perturbed towards maculopathy. Here, we present an extensive review of the clinical and physiological features of the ageing retina, as well as mechanisms implicated in pathology, synthesised from a vast body of the published literature. We use this novel synthesis to construct a comprehensive process schematic, encompassing all key species and physiological processes such as nutrients, waste and lipoprotein management. We are therefore able to express these processes in a mathematical language via a comprehensive modelling framework, comprising a set of twenty-three equations spanning three distinct biological compartments. This very general modelling framework may now be adapted to more focused studies on individual mechanisms, processes or components underlying of the many facets of AMD. As an example of such a focused application, we conclude this article with a one-compartment, four-species model of the retinal pigment epithelium, which considers the parametric conditions under which either cholesterol homeostasis or unregulated accumulation of cholesterol may obtain in the ageing eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AROS:

Anti-reactive oxygen species

AMD:

Age-related macular degeneration

BLamD:

Basal laminar deposit

BLinD:

Basal linear deposit

BLL:

Bilipid layer

BM:

Bruch’s membrane

CC:

Choriocappilaris

CC BL:

Choriocappilaris basal lamina

CNV:

Choroidal neovascularisation

DHA:

Docohexaenoate acid

EC:

Esterified cholesterol

ECM:

Extracellular matrix

EL:

Elastin layer

GA:

Geographic atrophy

HDL:

High-density lipoprotein

ICL:

Inner collagenous layer

LDL:

Low-density lipoprotein

LDL-R:

Low-density lipoprotein receptor

LSC:

Light-sensitive cells

nAMD:

Neovascular AMD

NR:

Neural retina

OCL:

Outer collagenous layer

POS:

Photoreceptor outer segments

PR:

Photoreceptors

RPE:

Retinal pigment epithelium

RPE BL:

Retinal pigment epithelium basal lamina

ROS:

Reactive oxygen species

SDD:

Subretinal drusenoid deposit

TG:

Triglycerides

UC:

Unesterified cholesterol

VEGF:

Vascular endothelial growth factor

VLDL:

Very low-density lipoprotein

TGF-\(\beta \) :

Transforming growth factor beta

TIMP-3:

Tissue inhibitor of metalloproteinase-3

References

  • Araujo RP, McElwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66(5):1039

    MathSciNet  MATH  Google Scholar 

  • Ardeljan D, Chan C (2013) Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retinal Eye Res 37:68–89

    Google Scholar 

  • Ayala A, Munoz MF, Argucelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:31

    Google Scholar 

  • Beattie JR, Pawlak AM, Boulton ME, Zhang J, Monnier VM, McGarvey JJ, Stitt AW (2010) Multiplex analysis of age-related protein and lipid modifications in human Bruch’s membrane. FASEB J 24(12):4816–4824

    Google Scholar 

  • Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45(2):115–134

    Google Scholar 

  • Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Asp Med 33(4):295–317

    Google Scholar 

  • Booij JC, Baas DC, Beisekeeva J, Gorgels TGMF, Bergen AAB (2010) The dynamic nature of Bruch’s membrane. Prog Retinal Eye Res 29:1–18

    Google Scholar 

  • Boulton ME (1991) Chapter 6 ageing of the retinal pigment epithelium. Prog Retinal Res 11:125–151

    Google Scholar 

  • Brown MS, Goldstein JL (1975) Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell 6(3):307–316

    Google Scholar 

  • Brown M, Goldstein J (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232(4746):34–47

    Google Scholar 

  • Buch H (2005) Fourteen-year incidence of age-related maculopathy and cause-specific prevalence of visual impairment and blindness in a Caucasian population: the Copenhagen City Eye Study. Acta Ophthalmol Scand 83:5–32

    Google Scholar 

  • Buschini E, Piras A, Nuzzi R, Vercelli A (2011) Age related macular degeneration and drusen: neuroinflammation in the retina. Prog Neurobiol 95(1):14–25

    Google Scholar 

  • Chiras D, Kitsos G, Petersen MB, Skalidakis I, Kroupis C (2015) Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit Rev Clin Lab Sci 52(1):12–27

    Google Scholar 

  • Covic A, Kanbay M, Lerma EV (2014) Dyslipidemias in kidney disease. Springer, New York

    Google Scholar 

  • Curcio CA (2018a) Antecedents of soft drusen, the specific deposits of age-related macular degeneration, in the biology of human macula. Investig Ophthalmol Vis Sci 59(4):AMD182–AMD194

    Google Scholar 

  • Curcio CA (2018b) Soft drusen in age-related macular degeneration: biology and Targeting via the oil spill strategies. Investig Ophthalmol Vis Sci 59(4):160–181

    Google Scholar 

  • Curcio CA, Johnson M (2013) Chapter 20-structure, function, and pathology of Bruch’s membrane. In: Ryan SJ, Sadda SR, Hinton DR, Schachat AP, Wilkinson CP, Wiedemann P (eds) Retina, 5th edn. W.B. Saunders, London, pp 465–481

    Google Scholar 

  • Curcio CA, Johnson M, Rudolf M, Huang J (2011) The oil spill in ageing Bruch membrane. Br J Ophthalmol 95(12):1638–1645

    Google Scholar 

  • Curcio CA, Millican CL, Allen KA, Kalina RE (1993) Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Investig Ophthalmol Vis Sci 34(12):3278–3296

    Google Scholar 

  • Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Investig Ophthalmol Vis Sci 42(1):265–274

    Google Scholar 

  • Curcio CA, Presley JB, Malek G, Medeiros NE, Avery DV, Kruth HS (2005a) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Exp Eye Res 81(6):731–741

    Google Scholar 

  • Curcio CA, Presley JB, Millican CL, Medeiros NE (2005b) Basal deposits and drusen in eyes with age-related maculopathy: evidence for solid lipid particles. Exp Eye Res 80(6):761–775

    Google Scholar 

  • Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30(8):1691–1699

    Google Scholar 

  • Feinberg M (2019) Foundations of chemical reaction network theory. Springer, Cham

    MATH  Google Scholar 

  • Ferris FL, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, Sadda SR (2013) Clinical classification of age-related macular degeneration. Ophthalmology 120(4):844–851

    Google Scholar 

  • Fliesler SJ (2010) Lipids and lipid metabolism in the eye. J Lipid Res 51(1):1–3

    Google Scholar 

  • Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22(2):79–131

    Google Scholar 

  • Fliesler SJ, Bretillon L (2010) The ins and outs of cholesterol in the vertebrate retina. J Lipid Res 51(12):3399–3413

    Google Scholar 

  • Gao H, Hollyfield J (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33(1):1–17

    Google Scholar 

  • Gatenby RA, Maini PK (2003) Mathematical oncology: cancer summed up. Nature 421(6921):321–321

    Google Scholar 

  • Giachelli CM (2009) The emerging role of phosphate in vascular calcification. Kidney Int 75(9):890–897

    Google Scholar 

  • Gordiyenko N, Campos M, Lee JW, Fariss RN, Sztein J, Rodriguez IR (2004) RPE cells internalize low-density lipoprotein (LDL) and oxidized LDL (oxLDL) in large quantities in vitro and in vivo. Invest Ophthalmol Vis Sci 45(8):2822–2829

    Google Scholar 

  • Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, Peters A, Heid IM, Palm C, Weber BHF (2018) A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 125(9):1410–1420

    Google Scholar 

  • Grossniklaus HE, Green WR (2004) Choroidal neovascularization. Am J Ophthalmol 137(3):496–503

    Google Scholar 

  • Hageman GS, Luthert PJ, Chong NHV, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retinal Eye Res 20(6):705–732

    Google Scholar 

  • Handa J, Bowes Rickman C, Dick A, Gorin M, Miller J, Toth C, Ueffing M, Zarbin M, Farrer L (2019) A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun 10(1):1–11

    Google Scholar 

  • Hartnett ME, Weiter JJ, Garsd A, Jalkh AE (1992) Classification of retinal pigment epithelial detachments associated with drusen. Graefe’s Arch Clin Exp Ophthalmol 230(1):11–19

    Google Scholar 

  • Hussain MA, Bhuiyan A, Luu CD, Theodore Smith R, Guymer RH, Ishikawa H, Schuman SJ, Ramamohanarao K (2018) Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm. PloS One 13(6):e0198281

    Google Scholar 

  • Ioseliani O (2006) New developments in eye research. Nova biomedical. Nova Biomedical Books, New York

    Google Scholar 

  • Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Asp Med 33(4):399–417

    Google Scholar 

  • Kent D, Sheridan C (2003) Choroidal neovascularization: a wound healing perspective. Mol Vis 9:747–755

    Google Scholar 

  • Kijlstra A, Berendschot TTJM (2015) Age-related macular degeneration: a complementopathy? Ophthalmic Res 54(2):64–73

    Google Scholar 

  • Kim J, Zhao H, Martinez J, Doggett T, Kolesnikov AV, Tang PH, Ablonczy Z, Chan C, Zhou Z, Green DR, Ferguson TA (2013) Noncanonical autophagy promotes the visual cycle. Cell 154(2):365–376

    Google Scholar 

  • Krinsky NI, Cornwell DG, Oncley JL (1958) The transport of vitamin A and carotenoids in human plasma. Arch Biochem Biophys 73(1):233–246

    Google Scholar 

  • Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE, Ambati BK (2016) Risk factors and biomarkers of age-related macular degeneration. Prog Retinal Eye Res 54:64–102

    Google Scholar 

  • Liscurn L (2002) Chapter 15 cholesterol biosynthesis. New Compr Biochem 36:409–431

    Google Scholar 

  • Luthert P (2010) Pathogenesis of age-related macular degeneration. In: Mini-symposium ocular pathology

  • Maguire MG, Bressler SB, Bressler NM, Alexander J, Hiner CJ, Javornik MS, Phillips D, Marsh MJ, Hawkins BS, Burgess DB, Chandra S, Klein ML, Orth DH, Stevens T, Fine L (1997) Risk factors for choroidal neovascularization in the second eye of patients with juxtafoveal or subfoveal choroidal neovascularization secondary to age-related macular degeneration. Arch Ophthalmol 115(6):741–747

    Google Scholar 

  • Marmor MF, Wolfensberger TW (1998) The retinal pigment epithelium. Oxford University Press, New York

    Google Scholar 

  • Mast N, Reem R, Bederman I, Huang S, Dipatre PL, Bjorkhem I, Pikuleva IA (2011) Cholestenoic acid is an important elimination product of cholesterol in the retina: Comparison of retinal cholesterol metabolism with that in the brain. Invest Ophthalmol Vis Sci 52(1):594–603

    Google Scholar 

  • McHarg S, Clark SJ, Day AJ, Bishop PN (2015) Age-related macular degeneration and the role of the complement system. Mol Immunol 67(1):43–50

    Google Scholar 

  • Noske UM, Schmidt-Erfurth U, Meyer C, Diddens H (1998) Lipid metabolism in retinal pigment epithelium (RPE): a possible role of LDL receptors. Der Ophthalmol 95(12):814–819

    Google Scholar 

  • Obana A, Sasano H, Okazaki S, Otsuki Y, Seto T, Gohto Y (2017) Evidence of carotenoid in surgically removed lamellar hole-associated epiretinal proliferation. Invest Ophtalmol Vis Sci 58(12):5157–5163

    Google Scholar 

  • Oyster CW (1999) The Human Eye. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Pauleikhoff D, Harper CA, Marshall J (1990) Aging changes in Bruch’s membrane: a histochemical and morphological study. Ophthalmology 97:171–178

    Google Scholar 

  • Pauleikhoff D, Zuels S, Sheraidah G, Marshall J, Wessing A, Bird A (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99(10):1548–1553

    Google Scholar 

  • Pikuleva IA, Curcio CA (2014) Cholesterol in the retina: the best is yet to come. Progr Retinal Eye Res 41:64–89

    Google Scholar 

  • Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia 61(5):651–678

    Google Scholar 

  • Roberts PA, Gaffney EA, Luthert PJ, Foss AJE, Byrne HM (2016) Mathematical and computational models of the retina in health, development and disease. Progr Retinal Eye Res 53:48–69

    Google Scholar 

  • Rodríguez IR, Larrayoz IM (2010) Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J Lipid Res 51(10):2847–2862

    Google Scholar 

  • Rudolf M, Clark ME, Chimento MF, Li C, Medeiros NE, Curcio CA (2008) Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Invest Ophthalmol Vis Sci 49(3):1200–1209

    Google Scholar 

  • Sarks J, Sarks S, Killingsworth M (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye (Basingstoke) 2(5):552–577

    Google Scholar 

  • Savic RM, Jonker DM, Kerbusch T, Karlsson MO (2007) Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 34(5):711–726

    Google Scholar 

  • Schaal KB, Freund KB, Litts KM, Zhang Y, Messinger JD, Curcio CA (2015) Outer retinal tubulation in advanced age-related macular degeneration: optical coherence tomographic findings correspond to histology. RETINA 35(7):1339

    Google Scholar 

  • Scholl HPN, Fleckenstein M, Charbel Issa P, Keilhauer C, Holz FG, Weber BHF (2007) An update on the genetics of age-related macular degeneration. Mol Vis 13:196–205

    Google Scholar 

  • Shirinifard A, Glazier JA, Swat M, Gens JS, Family F, Jiang Y, Grossniklaus HE (2012) Adhesion failures determine the pattern of choroidal neovascularization in the eye: A computer simulation study. PloS Comput Biol 8(5):e1002440

    Google Scholar 

  • Spaide RF, Armstrong D, Browne R (2003) Choroidal neovascularisation in age-related macular degeneration-what is the cause? Retina 23(5):595–614

    Google Scholar 

  • Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1999) Histologic and Morphometric Analysis of the Choroid, Bruch’s Membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol 44(1):S10–S32

    Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Phys Rev 85:845–881

    Google Scholar 

  • Subczynski WK, Wisniewska A, Widomska J (2010) Location of macular xanthophylls in the most vulnerable regions of photoreceptor outer-segment membranes. Arch Biochem Biophys 504(1):61–66

    Google Scholar 

  • Tabas I, Williams KJ, Borén J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis. Circulation 116(16):1832–1844

    Google Scholar 

  • Thomas SE, Harrison EH (2016) Mechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins. J Lipid Res 57(10):1865–1878

    Google Scholar 

  • Tserentsoodol N, Gordiyenko N, Pascual I, Lee J, Fliesler S, Rodriguez I (2006a) Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol Vis 12:1319–1333

    Google Scholar 

  • Tserentsoodol N, Sztein J, Campos M, Gordiyenko NV, Fariss RN, Lee JW, Fliesler SJ, Rodriguez IR (2006b) Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Mol Vis 12:1306–1318

    Google Scholar 

  • van Lookeren Campagne M, LeCouter J, Yaspan BL, Ye W (2014) Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol 232(2):151–164

    Google Scholar 

  • Wang L, Li C, Rudolf M, Belyaeva OV, Chung BH, Messinger JD, Kedishvili NY, Curcio CA (2009) Lipoprotein particles of intraocular origin in human Bruch membrane: an unusual lipid profile. Invest Ophthalmol Vis Sci Vis Sci 50(2):870–877

    Google Scholar 

  • Wang ZL, Qiao BD, Li GX (2014) Bevacizumab cured age-related macular degeneration (AMD) via down-regulate TLR2 pathway abstract. Cent Eur J Biol 9(5):469–475

    Google Scholar 

  • Wattis JAD, O’Malley B, Blackburn H, Pickersgill L, Panovska J, Byrne HM, Jackson KG (2008) Mathematical model for low density lipoprotein (LDL) endocytosis by hepatocytes. Bull Math Biol 70(8):2303

    MathSciNet  MATH  Google Scholar 

  • Wecker T, Ehlken C, Bühler A, Lange C, Agostini H, Böhringer D, Stahl A (2017) Five-year visual acuity outcomes and injection patterns in patients with pro-re-nata treatments for AMD, DME, RVO and myopic CNV. Br J Ophthalmol 101(3):353–359

    Google Scholar 

  • Wikimedia Commons (2018) File:retina layers.svg. Wikimedia Commons, the free media repository

  • Wikimedia Commons (2019) File:schematic diagram of the human eye en.svg. Wikimedia Commons, the free media repository

  • Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15(5):551–561

    Google Scholar 

  • Wolter JR, Falls HF (1962) Bilateral confluent drusen. Arch Ophthalmol 68(2):219–226

    Google Scholar 

  • Xue Y, Shen SQ, Jui J, Rupp AC, Byrne LC, Hattar S, Flannery JG, Corbo JC, Kefalov VJ (2015) CRALBP supports the mammalian retinal visual cycle and cone vision. J Clin Invest 125(2):727–738

    Google Scholar 

  • Zambon S, Orlando R, Sartore G, Bassix A, Manzato E, Crepaldi G (1995) The lipoprotein composition of plasma and ascitic fluid in liver cirrhosis. Eur J Clin Invest 25(3):143–148

    Google Scholar 

  • Zarbin MA, Rosenfeld PJ (2010) Pathway-based therapies for age-related macular degeneration: an integrated survey of emerging treatment alternatives. RETINA 30(9):1350–1367

    Google Scholar 

  • Zekavat SM, Lu J, Maugeais C, Mazer NA (2017) An in silico model of retinal cholesterol dynamics (RCD model): insights into the pathophysiology of dry AMD. J Lipid Res 58(7):1325–1337

    Google Scholar 

  • Zheng W, Reem RE, Omarova S, Huang S, DiPatre PL, Charvet CD, Curcio CA, Pikuleva IA (2012) Spatial distribution of the pathways of cholesterol homeostasis in human retina. PLoS One 7(5):e37926

    Google Scholar 

  • Zouache MA, Eames I, Luthert PJ (2015) Blood flow in the choriocapillaris. J Fluid Mech 774:37–66

    MathSciNet  Google Scholar 

  • Zweifel SA, Spaide RF, Curcio CA, Malek G, Imamura Y (2010) Reticular pseudodrusen are subretinal drusenoid deposits. Ophthalmology 117(2):303–312

    Google Scholar 

Download references

Acknowledgements

Robyn P. Araujo is the recipient of an Australian Research Council (ARC) Future Fellowship (project number FT190100645) funded by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn P. Araujo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheepers, R., Pettet, G.J., van Heijster, P. et al. Cholesterol Regulation in Age-Related Macular Degeneration: A Framework for Mathematical Modelling of Drusen Biogenesis. Bull Math Biol 82, 135 (2020). https://doi.org/10.1007/s11538-020-00812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00812-0

Keywords

Navigation