Skip to main content
Log in

Stationary Pattern of a Reaction–Diffusion Mussel–Algae Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we consider a reaction–diffusion mussel–algae model with state-dependent mussel mortality. This mortality involves a positive feedback term resulting from the reduction of dislodgment and predation and a negative feedback term resulting from the intraspecific competition for mussel. We first study the global stability of the nonnegative uniform steady states and then focus on the existence and nonexistence of nonconstant positive steady states. The global bifurcation of constant positive steady state is also considered. Our results suggest that the regular patterning in mussel beds may be caused by the high mobility of algae or the low diffusion of mussels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainseba BE, Bendahmane M, Noussair A (2008) A reaction–diffusion system modeling predator–prey with prey-taxis. Nonlinear Anal Real World Appl 9:2086–2105

    MathSciNet  MATH  Google Scholar 

  • Britton NF (1989) Aggregation and the competitive exclusion principle. J Theor Biol 136:57–66

    MathSciNet  Google Scholar 

  • Britton NF (1990) Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J Appl Math 50:1663–1688

    MathSciNet  MATH  Google Scholar 

  • Callahan TK, Knobloch E (1999) Pattern formation in three-dimensional reaction-diffusion systems. Phys D 132:339–362

    MathSciNet  MATH  Google Scholar 

  • Cangelosi RA, Wollkind DJ, Kealy-Dichone BJ, Chaiya I (2015) Nonlinear stability analyses of Turing patterns for a mussel-algae model. J Math Biol 70:1249–1294

    MathSciNet  MATH  Google Scholar 

  • Chen S, Shi J, Wei J (2013) The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Comm Pure Appl Anal 12:481–501

    MathSciNet  MATH  Google Scholar 

  • Conway E, Hoff D, Smoller J (1978) Large time behavior of solutions of systems of nonlinear reaction-diffusion equations. SIAM J Appl Math 35:1–16

    MathSciNet  MATH  Google Scholar 

  • Henry D (1981) Geometric theory of semilinear parabolic equations. Lecture notes in mathematics, vol 840. Springer, Berlin

    Google Scholar 

  • Hollis SL, Martin RH Jr, Pierre M (1987) Global existence and boundedness in reaction-diffusion systems. SIAM J Math Anal 18:744–761

    MathSciNet  MATH  Google Scholar 

  • Kareiva P, Odell G (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am Nat 130:233–270

    Google Scholar 

  • Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284:1826–1828

    Google Scholar 

  • Lieberman GM (2005) Bounds for the steady-state Sel’kov model for arbitrary p in any number of dimensions. SIAM J Math Anal 36:1400–1406

    MathSciNet  MATH  Google Scholar 

  • Lin C, Ni W, Takagi I (1988) Large amplitude stationary solutions to a chemotaxis system. J Differ Equ 72:1–27

    MathSciNet  MATH  Google Scholar 

  • Liu Q, Weerman EJ, Herman PMJ, Han O, Johan VDK (2012) Alternative mechanisms alter the emergent properties of self-organization in mussel beds. Proc R Soc B 279:2744–2753

    Google Scholar 

  • Liu Q, Doelman A, Rottschäfer V, Jager MD, Herman PMJ (2013) Phase separation explains a new class of self-organized spatial patterns in ecological systems. Proc Natl Acad Sci USA 110:11905–11910

    MathSciNet  Google Scholar 

  • Liu Q, Herman PMJ, Mooij WM, Huisman J, Scheffer M, Olff H, van de Koppel J (2014) Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat Commun 5:5234

    Google Scholar 

  • Lou Y, Ni W (1996) Diffusion, self-diffusion and cross-diffusion. J Differ Equ 131:79–131

    MathSciNet  MATH  Google Scholar 

  • Malchow H (1996) Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system. J Mar Syst 7:193–202

    Google Scholar 

  • Nirenberg L (1974) Topics in nonlinear functional analysis. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Pang PYH, Wang M (2003) Qualitative analysis of a ratio-dependent predator–prey system with diffusion. Proc R Soc Edinb Sect A 133:919–942

    MathSciNet  MATH  Google Scholar 

  • Pang PYH, Wang M (2004) Non-constant positive steady states of a predator–prey system with non-monotonic functional response and diffusion. Proc Lond Math Soc 88(3):135–157

    MathSciNet  MATH  Google Scholar 

  • Pao CV (1992) Nonlinear parabolic and elliptic equations. Plenum Press, New York

    MATH  Google Scholar 

  • Peng R, Zhao X (2016) A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species. J Math Biol 72:755–791

    MathSciNet  MATH  Google Scholar 

  • Peng R, Shi J, Wang M (2007) Stationary pattern of a ratio-dependent food chain model with diffusion. SIAM J Appl Math 76:1479–1503

    MathSciNet  MATH  Google Scholar 

  • Peng R, Shi J, Wang M (2008) On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law. Nonlinearity 21:1471–1488

    MathSciNet  MATH  Google Scholar 

  • Rabinowitz PH (1979) Some global results for nonlinear eigenvalue problems. J Funct Anal 7:487–513

    MathSciNet  MATH  Google Scholar 

  • Rietkerk M, Boerlijst MC, van Langevelde F et al (2002) Self-organization of vegetation in arid ecosystems. Am Nat 160:524–530

    Google Scholar 

  • Shen Z, Wei J (2019a) Bifurcation analysis in a diffusive mussel-algae model with delay. Int J Bifur Chaos Appl Sci Eng 29:1950144

    MathSciNet  MATH  Google Scholar 

  • Shen Z, Wei J (2019b) Spatiotemporal patterns in a delayed reaction-diffusion mussel-algae model. Int J Bifur Chaos Appl Sci Eng 29:1950164

    MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2013) History-dependent patterns of whole ecosystems. Ecol Complex 14:8–20

    Google Scholar 

  • Sherratt JA, Mackenzie JJ (2016) How does tidal flow affect pattern formation in mussel beds? J Theoret Biol 406:83–92

    MathSciNet  MATH  Google Scholar 

  • Shigesada N, Okubo A (1981) Analysis of the self-shading effect on algal vertical distribution in natural waters. J Math Biol 12:311–326

    MathSciNet  MATH  Google Scholar 

  • Song Y, Jiang H, Liu Q, Yuan Y (2017) Spatiotemporal dynamics of the diffusive mussel-algae model near Turing–Hopf bifurcation. SIAM J Appl Dyn Syst 16:2030–2062

    MathSciNet  MATH  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser A 237:37–72

    MathSciNet  MATH  Google Scholar 

  • van de Koppel J, Rietkerk M, Dankers N, Herman PMJ (2005) Self-dependent feedback and regular spatial patterns in young mussel beds. Am Nat 165:E66–77

    Google Scholar 

  • van de Koppel J, Gascoigne JC, Theraulaz G, Rietkerk M, Mooij WM, Herman PMJ (2008) Experimental evidence for spatial self-organization in mussel bed ecosystems. Science 322:739–742

    Google Scholar 

  • Volterra V (1928) Sur la théorie mathématique des phénomènes héréditaires. J Math Pures Appl 7:249–298

    MATH  Google Scholar 

  • von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001) Diversity of vegetation patterns and desertification. Phys Rev Lett 87:198101

    Google Scholar 

  • Wang R, Liu Q, Sun G, Jin Z, van de Koppel J (2008) Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds. J R Soc Interface 6:705–718

    Google Scholar 

  • Wang J, Wei J, Shi J (2016) Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems. J Differ Equ 260:3495–3523

    MathSciNet  MATH  Google Scholar 

  • Zhao J, Wei J (2015) Dynamics in a diffusive plankton system with delay and toxic substances effect. Nonlinear Anal Real World Appl 22:66–83

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their helpful comments and valuable suggestions which have improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by National Natural Science Foundation of China (No. 11771109).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Wei, J. Stationary Pattern of a Reaction–Diffusion Mussel–Algae Model. Bull Math Biol 82, 51 (2020). https://doi.org/10.1007/s11538-020-00727-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00727-w

Keywords

Navigation