Skip to main content
Log in

A Dimensionally Reduced Model of Biofilm Growth Within a Flow Cell

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Biofilms are colonies of bacteria attached to surfaces. They play a critical role in many engineering and medical applications. Scientists study biofilm growth in flow cells but often have limited direct knowledge of the environmental conditions in the apparatus. Using fully resolved, numerical simulations to estimate conditions within a flow cell is computationally expensive. In this paper, we use asymptotic analysis to create a simulation of a biofilm system that has one growth-limiting substrate, and we show that this method runs quickly while maintaining similar accuracy to prior models. These equations can provide a better understanding of the environmental conditions in experiments and can establish the boundary conditions for further smaller-scale numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Bakke R, Characklis WG, Turakhia MH, Yeh A (1990) Biofilms, chap. Modeling a Monopopulation Biofilm System: Pseudomonas aeruginosa. Wiley, New York

    Google Scholar 

  • Chopp DL (2009) Another look at velocity extensions in the level set method. SIAM J Sci Comput 31(5):3255–3273

    Article  MathSciNet  Google Scholar 

  • Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002) A mathematical model of quorum sensing in a growing bacterial biofilm. J Ind Microbiol Biotechnol 29(6):339–346

    Article  Google Scholar 

  • Chopp D, Kirisits M, Moran B, Parsek M (2003) The dependence of quorum sensing on the depth of a growing biofilm. Bull Math Biol 65(6):1053–1079

    Article  Google Scholar 

  • Crusz SA, Popat R, Rybtke MT, Cámara MM, Givskov M, Tolker-Nielsen T, Diggle SP, Williams P (2012) Bursting the bubble on bacterial biofilms: a flow cell methodology. Biofouling 28(8):835–842

    Article  Google Scholar 

  • Culotti A, Packman AI, Smalla K (2015) Pseudomonas aeruginosa facilitates campylobacter Jejuni growth in biofilms under oxic flow conditions. FEMS Microbiol Ecol 91(12):136

    Article  Google Scholar 

  • De Coninck A, De Baets B, Kourounis D, Verbosio F, Schenk O, Maenhout S, Fostier J (2016) Needles: toward large-scale genomic prediction with marker-by-environment interaction. Genetics 203(1):543–555. https://doi.org/10.1534/genetics.115.179887

    Article  Google Scholar 

  • Demaret L, Eberl HJ, Efendiev MA, Maloszewski P (2009) A simple bioclogging model that accounts for spatial spreading of bacteria. Electron J Differ Equ 2009(17):51–69

    MathSciNet  MATH  Google Scholar 

  • Dockery J, Klapper I (2001) Finger formation in biofilm layers. SIAM J Appl Math 62(3):853–869

    MathSciNet  MATH  Google Scholar 

  • Duddu R, Chopp DL, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103(1):92–104

    Article  Google Scholar 

  • Klapper I (2012) Productivity and equilibrium in simple biofilm models. Bull Math Biol 74(12):2917–2934

    Article  MathSciNet  Google Scholar 

  • Kourounis D, Fuchs A, Schenk O (2018) Towards the next generation of multiperiod optimal power flow solvers. IEEE Trans Power Syst PP(99):1–10. https://doi.org/10.1109/TPWRS.2017.2789187

    Article  Google Scholar 

  • Leal LG (1992) Laminar flow and convective transport processes: scaling principles and asymptotic analysis. Butterworth–Heinemann series in chemical engineering. Butterworth–Heinemann, Boston

    Google Scholar 

  • Lide DR (ed) (1990) CRC handbook of chemistry and physics, 71st edn. CRC Press, Boca Raton

    Google Scholar 

  • Merkey B, Rittmann B, Chopp D (2009) Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms. J Theor Biol 259(4):670–683

    Article  MathSciNet  Google Scholar 

  • Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer, Berlin

    Book  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  Google Scholar 

  • Rittman BE (1982) The effect of shear stress on biofilm loss rate. Biotechnol Bioeng 24(2):501–506

    Article  Google Scholar 

  • Rittmann BE (2002) Personal communication

  • Rittmann BE, McCarty P (2001) Environ Biotechnol. McGraw Hill, New York

    Google Scholar 

  • Sethian J (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Verbosio F, Coninck AD, Kourounis D, Schenk O (2017) Enhancing the scalability of selected inversion factorization algorithms in genomic prediction. J Comput Sci 22(Supplement C):99–108. https://doi.org/10.1016/j.jocs.2017.08.013

    Article  Google Scholar 

  • Wanner O, Gujer W (1986) A multispecies biofilm model. Biotechnol Bioeng 28(3):314–328

    Article  Google Scholar 

  • Williamson KJ, McCarty PL (1976) Verification studies of the biofilm model for bacterial substrate utilization. J Water Pol Cont Fed 48:281–289

    Google Scholar 

  • Xu KD, Stewart PS, Xia F, Huang CT, McFeters GA (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64(10):4035–4039

    Article  Google Scholar 

  • Zhang W, Sileika TS, Chen C, Liu Y, Lee J, Packman AI (2011) A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions. Biotechnol Bioeng 108(11):2571–2582

    Article  Google Scholar 

Download references

Acknowledgements

The funding was provided by the National Science Foundation (Grant No. DMS-1547394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah Ford.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ford, N., Chopp, D. A Dimensionally Reduced Model of Biofilm Growth Within a Flow Cell. Bull Math Biol 82, 40 (2020). https://doi.org/10.1007/s11538-020-00715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00715-0

Keywords

Navigation