Skip to main content

Advertisement

Log in

A Multicellular Model of Primary Saliva Secretion in the Parotid Gland

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We construct a three-dimensional anatomically accurate multicellular model of a parotid gland acinus to investigate the influence that the topology of its lumen has on primary fluid secretion. Our model consists of seven individual cells, coupled via a common lumen and intercellular signalling. Each cell is equipped with the intracellular calcium (\(\mathrm{Ca}^{2+}\))-signalling model developed by Pages et al, Bull Math Biol 81: 1394–1426, 2019. https://doi.org/10.1007/s11538-018-00563-z and the secretion model constructed by Vera-Sigüenza et al., Bull Math Biol 81: 699–721, 2019. https://doi.org/10.1007/s11538-018-0534-z. The work presented here is a continuation of these studies. While previous mathematical research has proven invaluable, to the best of our knowledge, a multicellular modelling approach has never been implemented. Studies have hypothesised the need for a multiscale model to understand the primary secretion process, as acinar cells do not operate on an individual basis. Instead, they form racemous clusters that form intricate water and protein delivery networks that join the acini with the gland’s ducts-questions regarding the extent to which the acinus topology influences the efficiency of primary fluid secretion to persist. We found that (1) The topology of the acinus has almost no effect on fluid secretion. (2) A multicellular spatial model of secretion is not necessary when modelling fluid flow. Although the inclusion of intercellular signalling introduces vastly more complex dynamics, the total secretory rate remains fundamentally unchanged. (3) To obtain an acinus, or better yet a gland flow rate estimate, one can multiply the output of a well-stirred single-cell model by the total number of cells required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. For results in cells 1 to 5, refer to the supplementary material accompanying this article.

References

  • Ambudkar IS (2014) Ca2+ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium 55(6):297–305

    Article  Google Scholar 

  • Barbe AG, Schmidt P, Bussmann M, Kunter H, Noack MJ, Röhrig G (2018) Xerostomia and hyposalivation in orthogeriatric patients with fall history and impact on oral health-related quality of life. Clin Interv Aging 13:1971

    Article  Google Scholar 

  • Berridge MJ, Galione A (1988) Cytosolic calcium oscillators. FASEB J 2(15):3074–3082

    Article  Google Scholar 

  • Boitano S, Dirksen ER, Sanderson MJ (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258(5080):292–295

    Article  Google Scholar 

  • Evans RL, Park K, Turner RJ, Watson GE, Nguyen H-V, Dennett MR, Hand AR, Flagella M, Shull GE, Melvin JE (2000) Severe impairment of salivation in Na\(^{+}\)/K\(^{+}\)/2Cl\(^{-}\) cotransporter (NKCC1)-deficient mice. J Biol Chem 275(35):26,720–26,726. https://doi.org/10.1074/jbc.M003753200

    Article  Google Scholar 

  • Ewert P, Aguilera S, Alliende C, Kwon Y-J, Albornoz A, Molina C, Urzúa U, Quest AF, Olea N, Pérez P et al (2010) Disruption of tight junction structure in salivary glands from sjögren’s syndrome patients is linked to proinflammatory cytokine exposure. Arthr Rheum 62(5):1280–1289

    Article  Google Scholar 

  • Foskett JK, Melvin JE (1989) Activation of salivary secretion: coupling of cell volume and [Ca\(^{2+}\)]\(_i\) in single cells. Science 244(4912):1582–1585

    Article  Google Scholar 

  • Gin E, Crampin EJ, Brown DA, Shuttleworth TJ, Yule DI, Sneyd J (2007) A mathematical model of fluid secretion from a parotid acinar cell. J Theor Biol 248(1):64–80. https://doi.org/10.1016/j.jtbi.2007.04.021

    Article  MathSciNet  Google Scholar 

  • Giovannucci DR, Bruce JI, Straub SV, Arreola J, Sneyd J, Shuttleworth TJ, Yule DI (2002) Cytosolic Ca\(^{2+}\) and Ca\(^{2+}\)-activated Cl\(^-\) current dynamics: insights from two functionally distinct mouse exocrine cells. J Physiol 540(2):469–484

    Article  Google Scholar 

  • Höfer T, Politi A, Heinrich R (2001) Intercellular Ca\(^{2+}\) wave propagation through gap-junctional Ca\(^{2+}\) diffusion: a theoretical study. Biophys J 80(1):75–87

    Article  Google Scholar 

  • Holmberg KV, Hoffman MP (2014) Anatomy, biogenesis and regeneration of salivary glands. In: Saliva: secretion and functions, vol 24, Karger Publishers, pp 1–13

  • Inagaki T, Ono K, Masuda W, Iida T, Hosokawa R, Inenaga K (2010) Differences in the Ca\(^{2+}\) response resulting from neurotransmitter stimulations of rat parotid acini and ducts. Auton Neurosci 154(1–2):102–107

    Article  Google Scholar 

  • Larina O, Thorn P (2005) Ca2+ dynamics in salivary acinar cells: distinct morphology of the acinar lumen underlies near-synchronous global ca2+ responses. J Cell Sci 118(18):4131–4139

    Article  Google Scholar 

  • Maclaren OJ, Sneyd J, Crampin EJ (2012) Efficiency of primary saliva secretion: an analysis of parameter dependence in dynamic single-cell and acinus models, with application to aquaporin knockout studies. J Membr Biol 245(1):29–50. https://doi.org/10.1007/s00232-011-9413-3

    Article  Google Scholar 

  • Maclaren OJ, Sneyd J, Crampin EJ (2013) What do aquaporin knockout studies tell us about fluid transport in epithelia? J Membr Biol 246(4):297–305

    Article  Google Scholar 

  • Mangos J, McSherry NR, Nousia-Arvanitakis S, Irwin K (1973) Secretion and transductal fluxes of ions in exocrine glands of the mouse. Am J Physiol 225(1):18–24. https://doi.org/10.1152/ajplegacy.1973.225.1.18

    Article  Google Scholar 

  • Martin C, Young J (1971) Electrolyte concentrations in primary and final saliva of the rat sublingual gland studied by micropuncture and catheterization techniques. Pflügers Archiv 324(4):344–360

    Article  Google Scholar 

  • Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469. https://doi.org/10.1146/annurev.physiol.67.041703.084745

    Article  Google Scholar 

  • Nagato T, Tandler B (1986) Gap junctions in rat sublingual gland. Anat. Rec 214(1):71–75

    Article  Google Scholar 

  • Nauntofte B (1992) Regulation of electrolyte and fluid secretion in salivary acinar cells. Am J Physiol 263(6):G823–G837. https://doi.org/10.1152/ajpgi.1992.263.6.G823

    Article  Google Scholar 

  • Pages N, Vera-Sigüenza E, Rugis J, Kirk V, Yule DI, Sneyd J (2019) A model of Ca\(^{2+}\) dynamics in an accurate reconstruction of parotid acinar cells. Bull Math Biol 5:1394–1426. https://doi.org/10.1007/s11538-018-00563-z

    Article  MathSciNet  MATH  Google Scholar 

  • Palk L, Sneyd J, Shuttleworth TJ, Yule DI, Crampin EJ (2010) A dynamic model of saliva secretion. J Theor Biol 266(4):625–640. https://doi.org/10.1016/j.jtbi.2010.06.027

    Article  MATH  Google Scholar 

  • Palk L, Sneyd J, Patterson K, Shuttleworth TJ, Yule DI, Maclaren O, Crampin EJ (2012) Modelling the effects of calcium waves and oscillations on saliva secretion. J Theor Biol 305:45–53. https://doi.org/10.1016/j.jtbi.2012.04.009

    Article  MathSciNet  MATH  Google Scholar 

  • Peña-Münzenmayer G, Catalán MA, Kondo Y, Jaramillo Y, Liu F, Shull GE, Melvin JE (2015) Ae4 (Slc4a9) anion exchanger drives Cl\(^-\)uptake-dependent fluid secretion by mouse submandibular gland acinar cells. J Biol Chem 290(17):10677–10688. https://doi.org/10.1074/jbc.M114.612895

    Article  Google Scholar 

  • Proctor GB (2000) (2016) The physiology of salivary secretion. Periodontology 70(1):11–25

    Article  Google Scholar 

  • Riva A, Riva-Testa F (1973) Fine structure of acinar cells of human parotid gland. Anat Rec 176(2):149–165

    Article  Google Scholar 

  • Saez JC, Connor JA, Spray DC, Bennett M (1989) Hepatocyte gap junctions are permeable to the second messenger, inositol 1, 4, 5-trisphosphate, and to calcium ions. Proc Nat Acad Sci 86(8):2708–2712

    Article  Google Scholar 

  • Sanderson MJ (1995) Intercellular calcium waves mediated by inositol trisphosphate. Ciba Found Symp 188:175–189

    Google Scholar 

  • Scully C (2003) Drug effects on salivary glands: dry mouth. Oral Dis 9(4):165–176

    Article  Google Scholar 

  • Sigüenza EA, Catalàn M, Peña-Münzenmayer G, Melvin E, Sneyd J (2018) A mathematical model supports a key role for ae4 (slc4a9) in salivary gland secretion. Bull Math Biol 80(2):255–282. https://doi.org/10.1007/s11538-017-0370-6

    Article  MathSciNet  MATH  Google Scholar 

  • Sigüenza E, Pages N, Rugis J, Yule DI, Sneyd J (2019) A mathematical model of fluid transport in an accurate reconstruction of parotid acinar cells. Bull Math Biol 81(3):699–721. https://doi.org/10.1007/s11538-018-0534-z

    Article  MathSciNet  MATH  Google Scholar 

  • Silva P, Stoff J, Field M, Fine L, Forrest J, Epstein F (1977) Mechanism of active chloride secretion by shark rectal gland: role of Na–K–ATPase in chloride transport. Am J Physiol 233(4):F298–F306. https://doi.org/10.1038/ki.1996.224

    Article  Google Scholar 

  • Sneyd J, Wilkins M, Strahonja A, Sanderson MJ (1998) Calcium waves and oscillations driven by an intercellular gradient of inositol (1, 4, 5)-trisphosphate. Biophys Chem 72(1–2):101–109

    Article  Google Scholar 

  • Sneyd J, Tsaneva-Atanasova K, Bruce J, Straub S, Giovannucci D, Yule D (2003) A model of calcium waves in pancreatic and parotid acinar cells. Biophys J 85(3):1392–1405

    Article  Google Scholar 

  • Sneyd J, Means S, Zhu M, Hak-Won J, Yule D (2017) Modeling calcium waves in an anatomically accurate three-dimensional parotid acinar cell. J Theor Biol 419:383–393

    Article  Google Scholar 

  • Tanimura A (2009) Mechanism of calcium waves and oscillations in non-excitable cells. Int J Dent Oral-Med Sci 8(1):1–11. https://doi.org/10.5466/ijoms.8.1

    Article  Google Scholar 

  • Tanimura A, Matsumoto Y, Tojyo Y (1998) Polarized Ca\(^{2+}\) release in saponin-permeabilized parotid acinar cells evoked by flash photolysis of ‘cagedâǍŹ inositol 1,4,5-trisphosphate. Biochem J 332(3):769–772

    Article  Google Scholar 

  • Wang T, Montell C (2006) A phosphoinositide synthase required for a sustained light response. J Neurosci 26(49):12,816–12,825

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Institutes of Health (NIDCR) Grant RO1DE019245-10 (ES, DY, and JS) and the Marsden Fund of the Royal Society of New Zealand Grant 3708441 (NP and JS). High-performance computing facilities and support were provided by the New Zealand eScience Infrastructure (NeSI). Funded jointly by NeSI’s collaborator institutions and through the New Zealand Ministry of Business, Innovation and Employment’s Research Infrastructure programme (ES, NP, JS, and JR). Finally, we would like to thank NVIDIA Corporation for a K40 GPU Grant (JR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elías Vera-Sigüenza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Fluxes of the Model

i. Sodium/Potassium ATPases (NaK-ATPases–Basolateral)

$$\begin{aligned} j_{\text {NaK}}&= S_b \alpha _{\text {NaK}} \left( r \frac{[\text {K}^+]_e^2 [\text {Na}^+]_i^3}{[\text {K}^+]_e^2+\alpha [\text {Na}^+]_i^3} \right) . \end{aligned}$$
  • Membrane surface density: \(\alpha _{\text {NaK}} = 1.6\) (amol/\(\upmu \hbox {m}^2\))

  • NaK-ATPase rate: \(r=0.0016\) (mM\(^{-3}\hbox { s}^{-1}\))

ii. Sodium–Potassium–Chloride Cotransporters (Nkcc1 - Basolateral)

$$\begin{aligned} j_{\text {Nkcc1}}&=S_b\alpha _{\text {Nkcc1}} \left( \frac{a_1-a_2 [\text {Na}^+]_i [\text {K}^+]_i [\text {Cl}^-]_i^2}{a_3+a_4 [\text {Na}^+]_i [\text {K}^+]_i [\text {Cl}^-]_i^2}\right) . \end{aligned}$$
  • Membrane surface density: \(\alpha _{\text {Nkcc1}} = 2.15\) (amol/\(\upmu \)m\(^2\))

  • Nkcc1 rate: \(a_1 = 157.55\) (s\(^{-2}\))

  • Nkcc1 rate: \(a_2 = 2.009 \times 10^{-5}\) (mM\(^{-4}\) s\(^{-2}\))

  • Nkcc1 rate: \(a_3 = 1.0306\) (s\(^{-1}\))

  • Nkcc1 rate: \(a_4 = 1.38 \times 10^{-6}\) (mM\(^{-4}\) s\(^{-1}\))

iii. Sodium/Proton Antiporter (Nhe1–Basolateral)

$$\begin{aligned} j_{\text {Nhe1}}=S_b G_{\text {Nhe1}} \Bigg [ \Bigg (\frac{[\text {H}^+]_i}{[\text {H}^+]_i+K_\text {H}}\Bigg )^2&\Bigg (\frac{[\mathrm{Na}^+]_e}{[\mathrm{Na}^+]_e+K_{\text {Na}}} \Bigg ) \\ -&\Bigg (\frac{[\text {H}^+]_e}{[\text {H}^+]_e+K_\text {H}}\Bigg )^2 \Bigg (\frac{[\mathrm{Na}^+]_i}{[\mathrm{Na}^+]_i+K_{\text {Na}}} \Bigg ) \Bigg ]. \end{aligned}$$
  • Membrane surface density: \(G_{\text {Nhe1}} = 0.9\) (amol/\(\upmu \)m\(^2\))

  • Half maximal \(\mathrm{Na}^+\) concentration: K\(_{\text {Na}}=15\) (mM)

  • Half maximal \(\mathrm{H}^+\) concentration: K\(_{\text {H}}=4.5 \times 10^{-4}\) (mM)

iv. Sodium-Bicarbonate/Chloride Exchanger (Ae4–Basolateral)

$$\begin{aligned} j_{\text {Ae4}}&= S_b G_{Ae4} \Bigg [ \Bigg (\frac{[\mathrm{Cl}^-]_e}{[\mathrm{Cl}^-]_e + K_{\text {Cl}}}\Bigg ) \Bigg (\frac{[\mathrm{Na}^+]_i}{[\mathrm{Na}^+]_i+ K_{\text {Na}}}\Bigg ) \Bigg (\frac{[\mathrm{HCO}_3^-]_i}{[\mathrm{HCO}_3^-]_i+ K_{\text {B}}}\Bigg )^2 \\&-\, \Bigg (\frac{[\mathrm{Cl}^-]_i}{[\mathrm{Cl}^-]_i + K_{\text {Cl}}}\Bigg ) \Bigg (\frac{[\mathrm{Na}^+]_e}{[\mathrm{Na}^+]_e + K_{\text {Na}}}\Bigg ) \Bigg (\frac{[\mathrm{HCO}_3^-]_e}{[\mathrm{HCO}_3^-]_e + K_{\text {B}}}\Bigg )^2\Bigg ]. \end{aligned}$$
  • Membrane surface density: \(G_{\text {Ae4}} = 1.3\) (amol/\(\upmu \hbox {m}^2\))

  • Half maximal \(\mathrm{Na}^+\) concentration: \(\hbox {K}_{\text {Na}}=15\) (mM)

  • Half maximal \(\mathrm{H}^+\) concentration: \(\hbox {K}_{\text {B}}=1\times 10^{4}\) (mM)

  • Half maximal \(\mathrm{H}^+\) concentration: \(\hbox {K}_{\text {Cl}}=5.6\) (mM)

v. Intracellular Bicarbonate Buffering (CA-IV)

$$\begin{aligned} j_{\text {Buffer}}&= \omega _i \Bigg (k_1[\text {CO}_2]_i-k_{-1}[\text {H}^+]_i[\text {HCO}_3^-]_i\Bigg ). \end{aligned}$$
  • Buffering association rate: \(k_\mathrm{p}=312\) (s\(^{-1}\))

  • Buffering dissociation rate: \(k_n=0.132\) (s\(^{-1}\))

vi. Basolateral Calcium-Activated Potassium Channels (K.Ca1 - BK/IK)

$$\begin{aligned}&j_{K}= \frac{G_{K}}{F} \Bigg [ V_{b} - \frac{R T}{F z^{K}} \ln \Bigg (\frac{[\mathrm{K}^+]_l}{[\mathrm{K}^+]_i} \Bigg ) \Bigg ], \\&G_{K} = \Bigg (\frac{g_{K}}{S_b^{\{c\}}} \Bigg ) \sum _{k=1}^K \int _{\partial \varOmega _{k}^{b\{c\}} } \Bigg (\frac{\tilde{[\mathrm{Ca}^{2+}]_i}_k^{\eta _2}}{K_{KCa}^{\eta _2}+ \tilde{[\mathrm{Ca}^{2+}]_i}_k^{\eta _2}}\Bigg ) \ dS_k. \end{aligned}$$
  • Half maximal concentration: \(K_{K_{\text {Ca}}}=0.3\) (\(\upmu \)M)

  • Hill coefficient: \(\eta _2=4.7\)

  • \(\mathrm{K}^+\) channel conductance: \(G_{\text {K}}=14.6\) (nS)

vii. Tight Junctional Ionic Fluxes (Paracellular)

$$\begin{aligned}&j_{t_{\mathrm{Na}}} = \frac{G_{t_{\mathrm{Na}^+}}}{F} \Bigg [V_\mathrm{a} - V_b - \frac{RT}{F} \ln \Bigg ( \frac{[\mathrm{Na}^+]_l}{[\mathrm{Na}^+]_e}\Bigg )\Bigg ],\\&j_{t_{\mathrm{K}}} = \frac{G_{t_{\mathrm{K}^+}}}{F} \Bigg [V_\mathrm{a} - V_b - \frac{RT}{F} \ln \Bigg ( \frac{[\mathrm{K}^+]_l}{[\mathrm{K}^+]_e}\Bigg )\Bigg ]. \end{aligned}$$
  • Temperature: \(T=310\) (Kelvin)

  • Universal Gas Constant: \(R=8.314\) (J mol\(^{-1}\) K\(^{-1}\))

  • Faraday’s Constant: \(F=6485.332\) (C)

  • Tight Junctional \(\mathrm{Na}^+\) conductance: \(G^t_{\text {Na}}=0.2\) (nS)

  • Tight Junctional \(\mathrm{K}^+\) conductance: \(G^t_{\text {K}}=0.16\) (nS)

viii. Apical Calcium-Activated Chloride Channels (TMeM16a - KCa)

$$\begin{aligned}&j_{Cl}= \frac{G_{Cl}}{F} \Bigg [ V_\mathrm{a} - \frac{R T}{F z^{Cl}} \ln \Bigg (\frac{[\mathrm{Cl}^-]_l}{[\mathrm{Cl}^-]_i}\Bigg ) \Bigg ], \\&G_{Cl} = \Bigg (\frac{g_{Cl}}{S_\mathrm{a}^{\{c,(c,n)\}}} \Bigg ) \sum _{k=1}^K \int _{\partial \varOmega _{k}^{a\{c,(c,n)\}} } \Bigg (\frac{\tilde{[\mathrm{Ca}^{2+}]_i}_k^{\eta }}{K_{CaCl}^{\eta }+ \tilde{[\mathrm{Ca}^{2+}]_i}_k^{\eta }}\Bigg ) \ dS_k. \end{aligned}$$
  • Half maximal concentration: \(K_{Cl_{\text {Ca}}}=0.2\) (\(\upmu \)M)

  • Hill coefficient: \(\eta _1=4.49\)

  • \(\mathrm{K}^+\) channel conductance: \(G_{\text {Cl}}=18.2\) (nS)

Model Summary

1.1 Fluid Flow Model

For any cell \(c = 1,\ldots ,7\), and its neighbours n,

$$\begin{aligned} \frac{\mathrm{d} \omega _i^{\{c \}}}{\mathrm{d}t} = j^{\{c\}}_{w_b} - \sum _n j^{\{c,(c,n)\}}_{w_\mathrm{a}},\\ \frac{\mathrm{d}\Big ([\mathrm{Na}^+]_i^{\{c\}} \omega ^{\{c\}}_i\Big )}{\mathrm{d}t}&= S_b^{\{c\}} \Bigg ( j^{\{c\}}_{\text {Nkcc1}} - 3 j^{\{c\}}_{\text {NaK}} + j^{\{c\}}_{\text {Nhe1}} - j^{\{c\}}_{\text {Ae4}} \Bigg ),\\ \frac{\mathrm{d}\Big ([\mathrm{K}^+]_i^{\{c\}} \omega ^{\{c\}}_i \Big )}{\mathrm{d}t}&= S_b^{\{c\}} \Bigg ( j^{\{c\}}_{\text {Nkcc1}} + 2 j^{\{c\}}_{\text {NaK}} \Bigg ) - \Bigg (\int _{\partial \varOmega _b^{\{c\}}} j^{\{c\}}_{\mathrm{Cl}} \ \text {d}S \Bigg ),\\ \frac{\mathrm{d} \Big ([\mathrm{Cl}^-]_i^{\{c\}} \omega ^{\{c\}}_i\Big )}{\mathrm{d}t}&= S_b^{\{c\}} \Bigg ( 2j^{\{c\}}_{\text {Nkcc1}} + j^{\{c\}}_{\text {Ae4}} \Bigg ) - \sum _n \Bigg (\int _{\partial \varOmega _\mathrm{a}^{\{c,(c,n)\}}} j^{\{c,(c,n)\}}_{\mathrm{Cl}} \ \text {d}S \Bigg ),\\ \frac{\mathrm{d} \Big ([\mathrm{HCO}_3^-]_i^{\{c\}} \omega ^{\{c\}}_i\Big )}{\mathrm{d}t}&= j^{\{c\}}_{\text {Buffer}} - S_b^{\{c\}} 2j^{\{c\}}_{\text {Ae4}}, \\ \frac{\mathrm{d} \Big ([\text {H}^+]^{\{c\}}_i \omega ^{\{c\}}_i\Big )}{\mathrm{d}t}&= j^{\{c\}}_{\text {Buffer}} - S_b^{\{c\}} j_{\text {Nhe1}}, \\ \frac{C_\mathrm{m}}{F} \frac{\mathrm{d} V^{\{c\}}_\mathrm{a}}{\mathrm{d} t}&= - \sum _n \Bigg (\int _{\partial \varOmega _\mathrm{a}^{\{c,(c,n)\}}} j^{\{c,(c,n)\}}_{\mathrm{Cl}} \ \text {d}S \Bigg ) + \sum _n \Bigg ( j^{t\{c,(c,n)\}}_\mathrm{Na} + j^{t\{c,(c,n)\}}_\mathrm{K} \Bigg ),\\ \frac{C_\mathrm{m}}{F} \frac{\mathrm{d} V^{\{c\}}_b}{\mathrm{d} t}&= - S_b^{\{c\}} j^{\{c\}}_\mathrm{NaK} - \Bigg (\int _{\partial \varOmega _b^{\{c\}}} j^{\{c\}}_{\mathrm{Cl}} \ \text {d}S \Bigg ) + \sum _n \Bigg ( j^{t\{c,(c,n)\}}_\mathrm{Na} + j^{t\{c,(c,n)\}}_\mathrm{K} \Bigg ), \\ \frac{\mathrm{d} \Bigg ([\mathrm{Na}^+]_l^{(c,n)} \omega ^{(c,n)}_l \Bigg )}{\mathrm{d}t}&= \sum _* j^*_w [\mathrm{Na}^+]_l^* + \Bigg (j^{\{c,(c,n)\}}_{t_{Na}} + j^{\{n,(c,n)\}}_{t_{Na}} \Bigg ) \\&\quad - \Bigg ( \sum _* j^*_w + j^{\{c,(c,n)\}}_{w} + j^{\{n,(c,n)\}}_{w} \Bigg ) [\mathrm{Na}^+]_l^{(c,n)},\\ \frac{\mathrm{d} \Bigg ( [\mathrm{K}^+]_l^{(c,n)} \omega ^{(c,n)}_l \Bigg )}{\mathrm{d}t}&= \sum _* j^*_w [\mathrm{K}^+]_l^* +\Bigg ( j^{\{c,(c,n)\}}_{t_K} + j^{\{n,(c,n)\}}_{t_K} \Bigg ) \\&\quad - \Bigg ( \sum _* j^*_w + j^{\{c,(c,n)\}}_{w} + j^{\{n,(c,n)\}}_{w} \Bigg ) [\mathrm{K}^+]_l^{(c,n)},\\ \frac{\mathrm{d} \Bigg ([\mathrm{Cl}^-]_l^{(c,n)} \omega ^{(c,n)}_l\Bigg )}{\mathrm{d}t}&= \sum _* j^*_w [\mathrm{Cl}^-]_l^* + \Bigg (\int _{\partial \varOmega _\mathrm{a}^{\{c,(c,n)\}}} j^{\{c,(c,n)\}}_{\mathrm{Cl}} \ \text {d}S \\&\quad + \int _{\partial \varOmega _\mathrm{a}^{\{n,(c,n)\}}} j^{\{n,(c,n)\}}_{\mathrm{Cl}} \ \text {d}S\Bigg )\\&\quad - \Bigg ( \sum _* j^*_w + j^{\{c,(c,n)\}}_{w} + j^{\{n,(c,n)\}}_{w} \Bigg ) [\mathrm{Cl}^-]_l^{(c,n)}. \end{aligned}$$

Here, the expression: \(\sum _* j^*_w [\mathrm ion]^*\) represents the sum of all neighbouring luminal convective water fluxes into the luminal segment shared between cells c and n. Similarly, \(\sum _* j^*_w\) represents the sum of all neighbouring luminal water fluxes in and out to the luminal segment shared between cells c and n.

1.2 Calcium Dynamics Model

i. Inositol-1,4,5-Trisphosphate Receptors (InsP\(_3\)R)

$$\begin{aligned} m(c)&= \frac{[\mathrm{Ca}^{2+}]_i^4}{K_c^4+[\mathrm{Ca}^{2+}]_i^4},\\ 1-A([\mathrm{InsP}_3]_i)&= B([\mathrm{InsP}_3]_i) = \frac{[\mathrm{InsP}_3]_i^2}{K_\mathrm{p}^2 + [\mathrm{InsP}_3]_i^2},\\ h_\infty ([\mathrm{Ca}^{2+}]_i)&= \frac{K_h^4}{K_h^4 + [\mathrm{Ca}^{2+}]_i^4},\\ \tau _h([\mathrm{Ca}^{2+}]_i)&= \tau _{\max } \frac{K_{\tau }^4}{K_{\tau }^4+[\mathrm{Ca}^{2+}]_i^4},\\ \alpha&= A([\mathrm{InsP}_3]_i)(1-m([\mathrm{Ca}^{2+}]_i)h_\infty ([\mathrm{Ca}^{2+}]_i)), \\ \beta&= B([\mathrm{InsP}_3]_i)m([\mathrm{Ca}^{2+}]_i)h([\mathrm{Ca}^{2+}]_i), \\ P_0&= \frac{\beta }{\beta +k_\beta (\beta +\alpha )} \\ J_\mathrm{IPR}&= k_\mathrm{IPR}P_0, \end{aligned}$$

ii. Sarcoplasmic/Endoplasmic Ca2+ ATPase Pumps (SERCA)

$$\begin{aligned}&J_{SERCA}= V_\mathrm{p}\frac{[\mathrm{Ca}^{2+}]_i^2-\bar{K}[\mathrm{Ca}^{2+}]_e^2}{[\mathrm{Ca}^{2+}]_i^2+K_s^2} \end{aligned}$$

iii. Inositol-1,4,5-Trisphosphate (InsP\(_3\) Dynamics)

$$\begin{aligned}&V_{\text {PLC}} = \mu (x) \frac{[\mathrm{Ca}^{2+}]_i^2}{[\mathrm{Ca}^{2+}]_i^2 +K_{\text {PLC}}^2},\\&V_\mathrm{deg} = \left( V_{5K}+V_{3K}\frac{[\mathrm{Ca}^{2+}]_i^2}{[\mathrm{Ca}^{2+}]_i^2 +K_{3K}^2}\right) [\mathrm{InsP}_3]_i,\\&\mu (x) = {\left\{ \begin{array}{ll} \begin{array}{rll} k_\mathrm{PLC} &{}\text {if }&{} d_b(x)<d_\mathrm{PLC} \text { and } d_\mathrm{a}(x)>dl_\mathrm{PLC},\\ &{} 0 \qquad \text {else}, \\ \end{array} \end{array}\right. } \end{aligned}$$

iv. Wave Propagation Model

$$\begin{aligned}&{\left\{ \begin{array}{ll} \begin{array}{rcl} &{}J_\mathrm{Wav} = V_\mathrm{Wav}(x)\frac{[\mathrm{Ca}^{2+}]_i^4}{[\mathrm{Ca}^{2+}]_i^4+K_\mathrm{Wav1}^4}g,\\ &{} \frac{\text {d}g}{\text {d}t} = \left( g_{\infty } - g\right) /\tau _\mathrm{Wav},\\ \end{array} \end{array}\right. }\\&g_{\infty } = \frac{K_{\mathrm{hWav}}^2}{K_{\mathrm{hWav}}^2+[\mathrm{Ca}^{2+}]_i^2}, \\&V_\mathrm{Wav}(x) = {\left\{ \begin{array}{ll} \begin{array}{rll} V_\mathrm{Wav}^\mathrm{max} \quad \frac{d_\mathrm{a}(x)}{d_\mathrm{Wav}} &{}\text {if }&{} d_\mathrm{a}(x)<d_\mathrm{Wav},\\ V_\mathrm{Wav}^\mathrm{max} \quad \text {else}. \end{array} \end{array}\right. } \end{aligned}$$

v. Equations of the Ca\(^{2+}\) Model

$$\begin{aligned} \frac{\partial \Big ( [\mathrm{Ca}^{2+}]_i\omega ^{\{c\}}_i \Big )}{\partial t}&= D_c \nabla ^2 [\mathrm{Ca}^{2+}]_i^{\{c\}} \ldots \\&\quad + {\omega ^{\{c\}}_{i_0}} \Bigg (J_\mathrm{Wav}([\mathrm{Ca}^{2+}]^{\{c\}}_{ER}-[\mathrm{Ca}^{2+}]_i^{\{c\}}) -J_{SERCA}\Bigg ),\\ \frac{\partial [\mathrm{Ca}^{2+}]^{\{c\}}_{ER}}{\partial t}&= D_c \nabla ^2 [\mathrm{Ca}^{2+}]^{\{c\}}_{ER} \ldots \\&\quad - \frac{1}{\gamma \Big ( \omega ^{\{c\}}_i \Big )}\Bigg (J_\mathrm{Wav}\Big ([\mathrm{Ca}^{2+}]^{\{c\}}_{ER}-[\mathrm{Ca}^{2+}]_i^{\{c\}}\Big )-J_{SERCA}\Bigg ), \\ \frac{\partial \Bigg ([\mathrm{InsP}_3]_i^{\{c\}} \omega ^{\{c\}}_i \Bigg )}{\partial t}&= D_\mathrm{p} \nabla ^2 [\mathrm{InsP}_3]_i^{\{c\}} + {\omega _{i_0}^{\{c\}} } \Bigg (V_\mathrm{PLC}-V_\mathrm{deg}\Bigg ), \\ \tau _h([\mathrm{Ca}^{2+}]_i)\frac{\text {d}h}{\text {d}t}&= h_\infty ([\mathrm{Ca}^{2+}]_i)-h,\\ \displaystyle \frac{\mathrm{d} g}{\mathrm{d} t}&= \displaystyle (g_\infty - g\omega ^{\{c\}}_i)/\tau ,\\ \frac{\mathrm{d} h^{\{c\}}}{\mathrm{d}t}&= \frac{1}{\tau ([\mathrm{Ca}^{2+}]_i)}(h_{\infty } - h), \end{aligned}$$

v. Boundary Conditions of the Ca\(^{2+}\) Model

$$\begin{aligned}&\nabla [\mathrm{Ca}^{2+}]_i^{\{c\}} \cdot \nabla \mathbf{n } = J_\mathrm{IPR} ([\mathrm{Ca}^{2+}]_{ER}-[\mathrm{Ca}^{2+}]_i) \\&\nabla [\mathrm{Ca}^{2+}]^{\{c\}}_{ER} \cdot \nabla \mathbf{n } = - \Bigg (\frac{1}{\gamma (\omega _i)}\Bigg )J_\mathrm{IPR}([\mathrm{Ca}^{2+}]_{ER}-[\mathrm{Ca}^{2+}]_i),\\&\nabla [\mathrm{InsP}_3]^{\{c\}}_i \cdot \nabla \mathbf{n } = {\mathrm{F}_\mathrm{Ip}} \Big ( [\mathrm{InsP}_3]_i^{\{n\}} - [\mathrm{InsP}_3]_i^{\{c\}} \Big ). \end{aligned}$$

Parameter

Description

Value

Units

\(V_{\mathrm{Wav}}^{\mathrm{max}}\)

Maximal rate of the wave propagation model

0.025

\(\upmu \)M s\(^{-1}\)

\(K_{\mathrm{wav1}}\)

Half maximal concentration of calcium for positive feedback on wave propagation

0.2

\(\upmu \)M

\(d_{\mathrm{Wav}}\)

Critical distance for the expression of the wave propagation

1

\(\upmu \)m

\(K_{\mathrm{hWav}}\)

Half maximal concentration of calcium for negative feedback on wave propagation

0.15

\(\upmu \)M

\(\tau _{\mathrm{wav}}\)

Time scaling for negative feedback of calcium on the wave propagation

10

s

\(k_\mathrm{IPR}\)

IPR rate

30

\(\upmu \,\hbox {M}\,\mathrm{m}\,\mathrm{s}^{-1}\)

\(k_{\beta }\)

0.4

\(K_c\)

Half maximal concentration of calcium for positive feedback on IPR

0.2

\(\upmu \)M

\(K_p\)

Half maximal concentration of \(\mathrm{InsP}_3\) for feedback on the IPR

0.2

\(\upmu \)M

\(K_h\)

Half maximal concentration of calcium for negative feedback on IPR

0.08

\(\upmu \)M

\(K_{\tau }\)

Half maximal concentration of calcium for feedback on the time scaling factor

0.1

\(\upmu \)M

\(\tau _{\max }\)

Time scaling for negative feedback of calcium on the IPR

1000

s

\(K_\mathrm{PLC}\)

Half maximal concentration of \(\mathrm{Ca}^{2+}\) for feedback on PLC

0.07

\(\upmu \)M

\(K_{3K}\)

Half maximal concentration of \(\mathrm{Ca}^{2+}\) for feedback on Insp-3-kinase

0.4

\(\upmu \)M

\(V_{3K}\)

\(\mathrm{InsP}_3\) metabolisation rate by InsP-3-kinase

0.05

s\(^{-1}\)

\(V_{5K}\)

\(\mathrm{InsP}_3\) degradation rate by InsP-5-phosphatase

0.05

s\(^{-1}\)

\(\hbox {d}_\mathrm{PLC}\)

Critical distance from the basal membrane for the expression of PLC

0.8

\(\upmu \)m

\(\hbox {dl}_\mathrm{PLC}\)

Minimum distance from the apical membrane for the expression of PLC

0.6

\(\upmu \)m

\(k_\mathrm{PLC}\)

Maximum PLC rate

0.6

\(\upmu \)M s\(^{-1}\)

\(d_b(x)\)

Distance to the basal region of the point x

\(\upmu \)m

\(d_\mathrm{a}(x)\)

Distance to the basal region of the point x

\(\upmu \)m

\(D_c\)

Calcium diffusion

5

\(\upmu \)m\(^2\) s\(^{-1}\)

\(D_p\)

IP\(_3\) diffusion coefficient

285

\(\upmu \)m\(^2\) s\(^{-1}\)

\(\gamma \)

Ratio ER volume/cytosolic volume

0.185

\(K_{K_{\text {Ca}}}\)

Half maximal concentration

0.3

\(\upmu \)M

\(\eta _2\)

Hill coefficient

4.7

Parameter

Description

Value

Units

\(G_{\text {K}}\)

\(\mathrm{Cl}^-\) channel conductance

14.6

nS

\(K_{Cl_{\text {Ca}}}\)

Half maximal concentration

0.2

\(\upmu \)M

\(\eta \)

Hill coefficient

4.49

\(G_{\text {Cl}}\)

\(\mathrm{Cl}^-\) channel conductance

18.2

nS

\(V_{\mathrm{Wav}}^{\mathrm{max}}\)

Wave propagation rate

0.025

\(\upmu \)M s\(^{-1}\)

\(K_{\mathrm{wav1}}\)

Half maximal concentration of calcium

0.2

\(\upmu \)M

\(d_{\mathrm{Wav}}\)

Critical distance of wave propagation

1

\(\upmu \)m

\(K_{\mathrm{hWav}}\)

Half maximal concentration of calcium propagation

0.15

\(\upmu \)M

\(\tau _{\mathrm{wav}}\)

Time scaling

10

s

\(S_b^{\{1\}}\)

Cell 1 Basolateral Surface Area

285.0

\(\upmu \hbox {m}^2\)

\(S_b^{\{2\}}\)

Cell 2 Basolateral Surface Area

238.6

\(\upmu \hbox {m}^2\)

\(S_b^{\{3\}}\)

Cell 3 Basolateral Surface Area

311.9

\(\upmu \hbox {m}^2\)

\(S_b^{\{4\}}\)

Cell 4 Basolateral Surface Area

284.8

\(\upmu \hbox {m}^2\)

\(S_b^{\{5\}}\)

Cell 5 Basolateral Surface Area

144.03

\(\upmu \hbox {m}^2\)

\(S_b^{\{6\}}\)

Cell 6 Basolateral Surface Area

304.05

\(\upmu \hbox {m}^2\)

\(S_b^{\{7\}}\)

Cell 7 Basolateral Surface Area

324.8

\(\upmu \hbox {m}^2\)

\(S_\mathrm{a}^{\{1\}}\)

Cell 1 Apical Surface Area

92.7

\(\upmu \hbox {m}^2\)

\(S_\mathrm{a}^{\{2\}}\)

Cell 2 Apical Surface Area

100.4

\(\upmu \hbox {m}^2\)

\(S_\mathrm{a}^{\{3\}}\)

Cell 3 Apical Surface Area

93.9

\(\upmu \hbox {m}^2\)

\(S_\mathrm{a}^{\{4\}}\)

Cell 4 Apical Surface Area

95.3

\(\upmu \hbox {m}^2\)

\(S_\mathrm{a}^{\{5\}}\)

Cell 5 Apical Surface Area

48.9

\(\upmu \hbox {m}^2\)

\(S_\mathrm{a}^{\{6\}}\)

Cell 6 Apical Surface Area

73.9

\(\upmu \hbox {m}^2\)

\(S_\mathrm{a}^{\{7\}}\)

Cell 7 Apical Surface Area

54.3

\(\upmu \hbox {m}^2\)

\(\omega _i^{\{1\}}\)

Cell 1 Resting Volume

1004.8

\(\upmu \hbox {m}^3\)

\(\omega _i^{\{2\}}\)

Cell 2 Resting Volume

1006.9

\(\upmu \hbox {m}^3\)

\(\omega _i^{\{3\}}\)

Cell 3 Resting Volume

1084.8

\(\upmu \hbox {m}^3\)

\(\omega _i^{\{4\}}\)

Cell 4 Resting Volume

1109.3

\(\upmu \hbox {m}^3\)

\(\omega _i^{\{5\}}\)

Cell 5 Resting Volume

495.04

\(\upmu \hbox {m}^3\)

\(\omega _i^{\{6\}}\)

Cell 6 Resting Volume

1036.2

\(\upmu \hbox {m}^3\)

\(\omega _i^{\{7\}}\)

Cell 7 Resting Volume

904.2

\(\upmu \hbox {m}^3\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vera-Sigüenza, E., Pages, N., Rugis, J. et al. A Multicellular Model of Primary Saliva Secretion in the Parotid Gland. Bull Math Biol 82, 38 (2020). https://doi.org/10.1007/s11538-020-00712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00712-3

Keywords

Navigation