Skip to main content
Log in

Predicting Pattern Formation in Multilayer Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate how the structure of interactions between coupled oscillators influences the formation of asynchronous patterns in a multilayer network by formulating a simple, general multilayer oscillator model. We demonstrate the analysis of this model in three-oscillator systems, illustrating the role of interactions among oscillators in sustaining differences in both the phase and amplitude of oscillations leading to the formation of asynchronous patterns. Finally, we demonstrate the generalizability of our model’s predictions through comparison with a more realistic multilayer model. Overall, our model provides a useful approach for predicting the types of asynchronous patterns that multilayer networks of coupled oscillators which cannot be achieved by the existing methods which focus on characterizing the synchronous state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguiar MA, Dias APS (2014) The lattice of synchrony subspaces of a coupled cell network: characterization and computation algorithm. J Nonlinear Sci 24(6):949–996

    Article  MathSciNet  MATH  Google Scholar 

  • Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47

    Article  MathSciNet  MATH  Google Scholar 

  • Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469(3):93–153

    Article  MathSciNet  Google Scholar 

  • Asllani M, Busiello DM, Carletti T, Fanelli D, Planchon G (2014) Turing patterns in multiplex networks. Phys Rev E 90(4):042814

    Article  Google Scholar 

  • Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89(5):054101

    Article  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424(4):175–308

    Article  MathSciNet  MATH  Google Scholar 

  • Boccaletti S, Bianconi G, Criado R, Del Genio CI, Gómez-Gardenes J, Romance M, Sendina-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544(1):1–122

    Article  MathSciNet  Google Scholar 

  • Brechtel A, Gramlich P, Ritterskamp D, Drossel B, Gross T (2018) Master stability functions reveal diffusion-driven pattern formation in networks. Phys Rev E 97(3):032307

    Article  Google Scholar 

  • Cross MC, Hohenberg PC (1993) Pattern formation outside of equilibrium. Rev Mod Phys 65(3):851

    Article  MATH  Google Scholar 

  • Díaz-Guilera A, Arenas A (2008) Phase patterns of coupled oscillators with application to wireless communication. In: Bio-inspired computing and communication. Springer, pp 184–191

  • Do AL, Höfener J, Gross T (2012) Engineering mesoscale structures with distinct dynamical implications. New J Phys 14(11):115022

    Article  Google Scholar 

  • Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. In: ACM SIGCOMM computer communication review, vol 29. ACM, pp 251–262

  • Freeman LC (1996) Some antecedents of social network analysis. Connections 19(1):39–42

    Google Scholar 

  • Goldwyn EE, Hastings A (2008) When can dispersal synchronize populations? Theor Popul Biol 73(3):395–402

    Article  MATH  Google Scholar 

  • Hata S, Nakao H, Mikhailov AS (2014) Dispersal-induced destabilization of metapopulations and oscillatory turing patterns in ecological networks. Sci Rep 4:3585

    Article  Google Scholar 

  • Hayes SM, Anderson KE (2018) Beyond connectivity: how the structure of dispersal influences metacommunity dynamics. Theor Ecol 11(2):151–159

    Article  Google Scholar 

  • Holland MD, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456(7223):792–794

    Article  Google Scholar 

  • Holyoak M, Fahrig L (2000) Habitat patch arrangement and metapopulation persistence of predators and prey. Am Nat 156(4):378–389

    Article  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654

    Article  Google Scholar 

  • Kamei H, Cock PJ (2013) Computation of balanced equivalence relations and their lattice for a coupled cell network. SIAM J Appl Dyn Syst 12(1):352–382

    Article  MathSciNet  MATH  Google Scholar 

  • Kouvaris NE, Hata S, Díaz-Guilera A (2015) Pattern formation in multiplex networks. Sci Rep 5:10840

    Article  Google Scholar 

  • Kuramoto Y (1975) Self-entrainment of a population of coupled non-linear oscillators. In: International symposium on mathematical problems in theoretical physics. Springer, pp 420–422

  • Nakao H, Mikhailov AS (2010) Turing patterns in network-organized activator-inhibitor systems. Nat Phys 6(7):544–550

    Article  Google Scholar 

  • Pecora LM, Carroll TL (1998) Master stability functions for synchronized coupled systems. Phys Rev Lett 80(10):2109

    Article  Google Scholar 

  • Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator–prey interactions. Am Nat 97:209–223

    Article  Google Scholar 

  • Sachtjen M, Carreras B, Lynch V (2000) Disturbances in a power transmission system. Phys Rev E 61(5):4877

    Article  Google Scholar 

  • Stewart I, Golubitsky M, Pivato M (2003) Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J Appl Dyn Syst 2(4):609–646

    Article  MathSciNet  MATH  Google Scholar 

  • Strogatz SH (2000) From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143(1):1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    Article  MATH  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237(641):37–72

    Article  MathSciNet  MATH  Google Scholar 

  • Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W (2010) Neural synchrony and the development of cortical networks. Trends Cognit Sci 14(2):72–80

    Article  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  MATH  Google Scholar 

  • Wolfrum M (2012) The turing bifurcation in network systems: collective patterns and single differentiated nodes. Physica D 241(16):1351–1357

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Kurt E. Anderson was supported in part by NSF DEB 1553718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Hayes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayes, S.M., Anderson, K.E. Predicting Pattern Formation in Multilayer Networks. Bull Math Biol 82, 4 (2020). https://doi.org/10.1007/s11538-019-00682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-019-00682-1

Keywords

Navigation