Skip to main content

Advertisement

Log in

Modelling the Host Immune Response to Mature and Immature Dengue Viruses

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Immature dengue virions contained in patient blood samples are essentially not infectious because the uncleaved surface protein prM renders them incompetent for membrane fusion. However, the immature virions regain full infectivity when they interact with anti-prM antibodies, and once opsonised virion fusion into Fc receptor-expressing cells is facilitated. We propose a within-host mathematical model for the immune response which takes into account the dichotomy between mature infectious and immature noninfectious dengue virions. The model accounts for experimental observations on the different interactions of plasmacytoid dendritic cells with infected cells producing virions with different infectivity. We compute the basic reproduction number as a function of the proportion of infected cells producing noninfectious virions and use numerical simulations to compare the host’s immune response in a primary and a secondary dengue infections. The results can be placed in the immunoregulatory framework with plasmacytoid dendritic cells serving as a bridge between the innate and adaptive immune response, and pose questions for potential experimental work to validate hypothesis about the evolutionary context whereby the virus strives to maximise its chance for transmission from the human host to the mosquito vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anderson R, Wang S, Osiowy C, Issekutz AC (1997) Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol 71(6):4226–4232

    Google Scholar 

  • Ansari N, Hesaaraki M (2012) A within host dengue infection model with immune response and Beddington–DeAngelis incidence rate. Appl Math 3:177–184

    MathSciNet  Google Scholar 

  • Asselin-Paturel C, Brizard G, Chemin K, Boonstra A, O’Garra A, Vicari A, Trinchieri G (2005) Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J Exp Med 201(7):1157–1167

    Google Scholar 

  • Beltramello M, Williams KL, Simmons CP, Macagno A, Simonelli L, Quyen N, Sukupolvi-Petty S, Navarro-Sanchez E, Young PR, de Silva AM, Rey FA, Varani L, Whitehead SS, Diamond MS, Harris E, Lanzavecchia A, Sallusto F (2010) The human immune response to dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8(3):271–283

    Google Scholar 

  • Ben-Shachar R, Koelle K (2015) Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary dengue infections. J R Soc Interface 12:20140886

    Google Scholar 

  • Ben-Shachar R, Schmidler S, Koelle K (2016) Drivers of inter-individual variation in dengue viral load dynamics. PLoS Comput Biol 12(11):e1005194

    Google Scholar 

  • Bray M, Lai C (1991) Dengue virus premembrane and membrane proteins elicit a protective immune response. Virology 185(1):505–508

    Google Scholar 

  • Chen X, Liu X, Liu W, Guo W, Yu Q, Wang C (2013) Comparative analysis of dendritic cell numbers and subsets between smoking and control subjects in the peripheral blood. Int J Clin Exp Patho 6(2):290–296

    Google Scholar 

  • Clapham H, Tricou V, Van Vinh Chau N, Simmons C, Ferguson N (2014) Within-host viral dynamics of dengue serotype 1 infection. J R Soc Interface 11:20140094

    Google Scholar 

  • Costa VV, Fagundes CT, Souza DG, Teixeira MM (2013) Inflammatory and innate immune responses in dengue infection: protection versus disease induction. Am J Pathol 182(6):1950–1961

    Google Scholar 

  • Décembre E, Assil S, Hillaire MLB, Dejnirattisai W, Mongkolsapaya J, Screaton GR, Davidson AD, Dreux M (2014) Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells. PLoS Pathog 10(10):1004434

    Google Scholar 

  • Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P, Mongkolsapaya J, Screaton G (2010) Cross-reacting antibodies enhance dengue virus infection in humans. Science 328(5979):745–748

    Google Scholar 

  • Dimitriu G, Lorenzi T, Ştefănescu R (2014) Evolutionary dynamics of cancer cell populations under immune selection pressure and optimal control of chemotherapy. Math Model Nat Phenom 9:88–104

    MathSciNet  MATH  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    MathSciNet  MATH  Google Scholar 

  • Dung NTP, Duyen HTL, Thuy NTV, Ngoc TV, Chau NVV, Hien TT, Rowland-Jones SL, Dong T, Farrar J, Wills B, Simmons CP (2010) Timing of CD8+ T cell responses in relation to commencement of capillary leakage in children with dengue. J Immunol 184(12):7281–7287

    Google Scholar 

  • Duong V, Lambrechts L, Paul RE, Ly S, Lay RS, Long KC, Huy R, Tarantola A, Scott TW, Sakuntabhai A, Buchya P (2015) Asymptomatic humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci USA 11:14688–14693

    Google Scholar 

  • Fitzgerald-Bocarsly P, Dai J, Singh S (2008) Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth F R 19(1):3–19

    Google Scholar 

  • Friberg H, Bashyam H, Toyosaki-Maeda T, Potts J, Greenough T, Kalayanarooj S, Gibbons R, Nisalak A, Srikiatkhachorn A, Green S, Stephens H, Rothman A, Mathew A (2011) Cross-reactivity and expansion of dengue-specific t cells during acute primary and secondary infections in humans. Sci Rep 1:51

    Google Scholar 

  • Gibbons JD, Chakraborti S (2010) Nonparametric statistical inference, 5th edn. Taylor and Francis, Boca Raton, FL

    MATH  Google Scholar 

  • Green S, Pichyangkul S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Nisalak A, Kurane I, Rothman AL, Ennis FA (1999) Early cd69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. J Infect Dis 180(5):1429–1435

    Google Scholar 

  • Gujarati T, Ambika G (2014) Virus antibody dynamics in primary and secondary dengue infections. J Math Biol 69:1773–1800

    MathSciNet  MATH  Google Scholar 

  • Halstead S, O’Rourke E (1977) Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265(5596):739–741

    Google Scholar 

  • Heinz FX, Stiasny K, Pschner-Auer G, Holzmann H, Allison SL, Mandl CW, Kunz C (1994) Structural changes and functional control of the tick-borne encephalitis virus glycoprotein e by the heterodimeric association with protein prm. Virology 198(1):109–117

    Google Scholar 

  • Kurane I, Rothman AL, Livingston PG, Green S, Gagnon SJ, Janus J, Innis BL, Nimmannitya S, Nisalak A, Ennis FA (1994) Immunopathologic mechanisms of dengue hemorrhagic fever and dengue shock syndrome. In: Brinton MA, Calisher CH, Rueckert R (eds) Positive-strand RNA viruses, pp 59–64. Springer, Vienna

    Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    MathSciNet  MATH  Google Scholar 

  • Mathan T, Figdor C, Buschow S (2013) Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol 4:372

    Google Scholar 

  • Mathew A, Rothman AL (2008) Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol Rev 225(1):300–313

    Google Scholar 

  • McKenna K, Beignon AS, Bhardwaj N (2005) Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol 79(1):17–27

    Google Scholar 

  • Montoya M, Schiavoni G, Mattei F, Gresser I, Belardelli F, Borrow P, Tough DF (2002) Type i interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 99(9):3263–3271

    Google Scholar 

  • Nikin-Beers R, Ciupe SM (2015) The role of antibody in enhancing dengue virus infection. Math Biosci 263:83–92

    MathSciNet  MATH  Google Scholar 

  • Nuraini N, Tasman H, Soewono E, Sidarto KA (2009) A with-in host dengue infection model with immune response. Math Comput Model 49(5):1148–1155

    MathSciNet  MATH  Google Scholar 

  • Pichyangkul S, Endy TP, Kalayanarooj S, Nisalak A, Yongvanitchit K, Green S, Rothman AL, Ennis FA, Libraty DH (2003) A blunted blood plasmacytoid dendritic cell response to an acute systemic viral infection is associated with increased disease severity. J Immunol 171(10):5571–5578

    Google Scholar 

  • Pierson TC, Diamond MS (2012) Degrees of maturity: the complex structure and biology of flaviviruses. Curr Opin Virol 2(2):168–175

    Google Scholar 

  • Rodenhuis-Zybert IA, van der Schaar HM, da Silva Voorham JM, van der Ende-Metselaar H, Lei HY, Wilschut J, Smit JM (2010) Immature dengue virus: a veiled pathogen? PLoS Pathog 6(1):1000718

    Google Scholar 

  • Rodenhuis-Zybert IA, Wilschut J, Smit JM (2011) Partial maturation: an immune-evasion strategy of dengue virus? Trends Microbiol 19(5):248–254

    Google Scholar 

  • Silveira GF, Wowk PF, Cataneo AHD, dos Santos PF, Delgobo M, Stimamiglio MA, Lo Sarzi M, Thomazelli APFS, Conchon-Costa I, Pavanelli WR, Antonelli LRV, Báfica A, Mansur DS, dos Santos CND, Bordignon J (2018) Human T lymphocytes are permissive for dengue virus replication. J Virol 92(10):e02181

    Google Scholar 

  • Tough D (2012) Modulation of T-cell function by type I interferon. Immunol Cell Biol 90:492–497

    Google Scholar 

  • Waggoner JJ, Balmaseda A, Gresh L, Sahoo MK, Montoya M, Wang C, Abeynayake J, Kuan G, Pinsky BA, Harris E (2016) Homotypic dengue virus reinfections in Nicaraguan children. J Infect Dis 214(7):986–993

    Google Scholar 

  • Wang S, Wang X, Liu M, Bai O (2018) Blastic plasmacytoid dendritic cell neoplasm: update on therapy especially novel agents. Ann Hematol 97:563–572

    Google Scholar 

  • Webster B, Werneke SW, Zafirova B, This S, Coléon S, Décembre E, Paidassi H, Bouvier I, Joubert PE, Duffy D, Walzer T, Albert ML, Dreux M (2018) Plasmacytoid dendritic cells control dengue and chikungunya virus infections via IRF7-regulated interferon responses. eLife 7:e34273

    Google Scholar 

  • Zybert IA, van der Ende-Metselaar H, Wilschut J, Smit JM (2008) Functional importance of dengue virus maturation: infectious properties of immature virions. J Gen Virol 89(12):3047–3051

    Google Scholar 

Download references

Acknowledgements

This publication is based on work from COST Action CA16227 Investigation & Mathematical Analysis of Avant-garde Disease Control via Mosquito Nano-Tech-Repellents, supported by COST (European Cooperation in Science and Technology). Weblink: www.cost.eu. Peter Rashkov would like to thank the Mathematical Biosciences Institute (funded from the National Science Foundation Division of Mathematical Sciences and supported by The Ohio State University) for the opportunity to participate in the Emphasis Semester on Infectious Diseases: Data, Modelling, Decisions (Spring 2018). The authors thank Libin Rong and Nikolay I. Nikolov for the helpful discussions during the manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rashkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Milen Borisov is partially supported by the National Scientific Program Information and Communication Technologies for a Single Digital Market in Science, Education and Security (IKTvNOS), Contract No DO1-205/23.11.2018, financed by the Ministry of Education and Science in Bulgaria. Peter Rashkov acknowledges partial support from the Bulgarian Fund for Scientific Research (FNI) under Contract DKOST01/29.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 706 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, M., Dimitriu, G. & Rashkov, P. Modelling the Host Immune Response to Mature and Immature Dengue Viruses. Bull Math Biol 81, 4951–4976 (2019). https://doi.org/10.1007/s11538-019-00664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00664-3

Keywords

Mathematics Subject Classification

Navigation