Skip to main content
Log in

Metastability as a Coexistence Mechanism in a Model for Dryland Vegetation Patterns

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Vegetation patterns are a ubiquitous feature of water-deprived ecosystems. Despite the competition for the same limiting resource, coexistence of several plant species is commonly observed. We propose a two-species reaction–diffusion model based on the single-species Klausmeier model, to analytically investigate the existence of states in which both species coexist. Ecologically, the study finds that coexistence is supported if there is a small difference in the plant species’ average fitness, measured by the ratio of a species’ capabilities to convert water into new biomass to its mortality rate. Mathematically, coexistence is not a stable solution of the system, but both spatially uniform and patterned coexistence states occur as metastable states. In this context, a metastable solution in which both species coexist corresponds to a long transient (exceeding \(10^3\) years in dimensional parameters) to a stable one-species state. This behaviour is characterised by the small size of a positive eigenvalue which has the same order of magnitude as the average fitness difference between the two species. Two mechanisms causing the occurrence of metastable solutions are established: a spatially uniform unstable equilibrium and a stable one-species pattern which is unstable to the introduction of a competitor. We further discuss effects of asymmetric interspecific competition (e.g. shading) on the metastability property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfaro M, Izuhara H, Mimura M (2018) On a nonlocal system for vegetation in drylands. J Math Biol 77:1761–1793

    Article  MathSciNet  MATH  Google Scholar 

  • Bastiaansen R, Jaïbi O, Deblauwe V, Eppinga MB, Siteur K, Siero E, Mermoz S, Bouvet A, Doelman A, Rietkerk M (2018) Multistability of model and real dryland ecosystems through spatial self-organization. In: Proceedings of the National Academy of Sciences, pp 201804771

  • Bates P, Xun J (1994) Metastable patterns for the Cahn–Hilliard equation, part I. J Differ Equ 111:421–457

    Article  MATH  Google Scholar 

  • Bates P, Xun J (1995) Metastable patterns for the Cahn–Hilliard equation: part II. Layer dynamics and slow invariant manifold. J Differ Equ 117:165–216

    Article  MATH  Google Scholar 

  • Baudena M, Rietkerk M (2013) Complexity and coexistence in a simple spatial model for arid savanna ecosystems. Theor Ecol 6:131–141

    Article  Google Scholar 

  • Baudena M, Boni G, Ferraris L, von Hardenberg J, Provenzale A (2007) Vegetation response to rainfall intermittency in drylands: results from a simple ecohydrological box model. Adv Water Resour 30:1320–1328

    Article  Google Scholar 

  • Baudena M, D’Andrea F, Provenzale A (2010) An idealized model for tree–grass coexistence in savannas: the role of life stage structure and fire disturbances. J Ecol 98:74–80

    Article  Google Scholar 

  • Bennett JJ, Sherratt JA (2018) Long-distance seed dispersal affects the resilience of banded vegetation patterns in semi-deserts. J Theor Biol. https://doi.org/10.1016/j.jtbi.2018.10.002

    Google Scholar 

  • Borgogno F, D’Odorico P, Laio F, Ridolfi L (2009) Mathematical models of vegetation pattern formation in ecohydrology. Rev Geophys 47:RG1005

  • Buis E, Veldkamp A, Boeken B, van Breemen N (2009) Controls on plant functional surface cover types along a precipitation gradient in the Negev Desert of Israel. J Arid Environ 73:82–90

    Article  Google Scholar 

  • Callegaro C, Ursino N (2018) Connectivity of niches of adaptation affects vegetation structure and density in self-organized (dis-connected) vegetation patterns. Land Degrad Dev 29:2589–2594

    Article  Google Scholar 

  • Consolo G, Currò C, Valenti G (2019) Supercritical and subcritical Turing pattern formation in a hyperbolic vegetation model for flat arid environments. Phys D Nonlinear Phenom. https://doi.org/10.1016/j.physd.2019.03.006

    Google Scholar 

  • Cornet A, Delhoume J, Montaña C (1988) Diversity and pattern in plant communities. In: During H, Werger M, Willems H (eds) Dynamics of striped vegetation patterns and water balance in the Chihuahuan Desert. SPB Academic Publishing, The Hague, pp 221–231

    Google Scholar 

  • Corrado R, Cherubini AM, Pennetta C (2014) Early warning signals of desertification transitions in semiarid ecosystems. Phys Rev E Stat Nonlinear Soft Matter Phys 90:062705

    Article  Google Scholar 

  • Dakos V, Kéfi S, Rietkerk M, van Nes EH, Scheffer M (2011) Slowing down in spatially patterned ecosystems at the brink of collapse. Am Nat 177:E153–E166

    Article  Google Scholar 

  • Deblauwe V, Barbier N, Couteron P, Lejeune O, Bogaert J (2008) The global biogeography of semi-arid periodic vegetation patterns. Glob Ecol Biogeogr 17:715–723

    Article  Google Scholar 

  • Deblauwe V, Couteron P, Bogaert J, Barbier N (2012) Determinants and dynamics of banded vegetation pattern migration in arid climates. Ecol Monogr 82:3–21

    Article  Google Scholar 

  • d’Herbès J-M, Valentin C, Tongway DJ, Leprun J-C (2001) Banded vegetation patterns and related structures. In: Tongway DJ, Valentin C, Seghieri J (eds) Banded vegetation patterning in arid and semiarid environments: ecological processes and consequences for management. Springer, New York, pp 1–19

    Google Scholar 

  • Dickovick JT (2014) Africa 2014–2015. World today (Stryker). Rowman & Littlefield Publishers, Lanham, p 374

    Google Scholar 

  • D’Onofrio D, Baudena M, D’Andrea F, Rietkerk M, Provenzale A (2015) Treegrass competition for soil water in arid and semiarid savannas: the role of rainfall intermittency. Water Resour Res 51:169–181

    Article  Google Scholar 

  • Dunkerley D, Brown K (2002) Oblique vegetation banding in the Australian arid zone: implications for theories of pattern evolution and maintenance. J Arid Environ 51:163–181

    Article  Google Scholar 

  • Eigentler L, Sherratt JA (2018) Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal. J Math Biol 77:739–763

    Article  MathSciNet  MATH  Google Scholar 

  • Eldridge D, Zaady E, Shachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. CATENA 40:323–336

    Article  Google Scholar 

  • Gandhi P, Werner L, Iams S, Gowda K, Silber M (2018) A topographic mechanism for arcing of dryland vegetation bands. J R Soc Interface 15:20180508

    Article  Google Scholar 

  • Gilad E, von Hardenberg J, Provenzale A, Shachak M, Meron E (2004) Ecosystem engineers: from pattern formation to habitat creation. Phys Rev Lett 93:098105

    Article  Google Scholar 

  • Gilad E, von Hardenberg J, Provenzale A, Shachak M, Meron E (2007a) A mathematical model of plants as ecosystem engineers. J Theor Biol 244:680–691

    Article  MathSciNet  Google Scholar 

  • Gilad E, Shachak M, Meron E (2007b) Dynamics and spatial organization of plant communities in water-limited systems. Theor Popul Biol 72:214–230

    Article  MATH  Google Scholar 

  • Gowda K, Iams S, Silber M (2018) Signatures of human impact on selforganized vegetation in the Horn of Africa. Engl Sci Rep 8:1–8

    Article  Google Scholar 

  • Gowda K, Chen Y, Iams S, Silber M (2016) Assessing the robustness of spatial pattern sequences in a dryland vegetation model. Proc R Soc Lond A 472:20150893

    Article  MathSciNet  MATH  Google Scholar 

  • Guttal V, Jayaprakash C (2007) Self-organization and productivity in semiarid ecosystems: implications of seasonality in rainfall. J Theor Biol 248:490–500

    Article  Google Scholar 

  • Hemming CF (1965) Vegetation arcs in Somaliland. J Ecol 53:57–67

    Article  Google Scholar 

  • HilleRisLambers R, Rietkerk M, van den Bosch F, Prins HHT, de Kroon H (2001) Vegetation pattern formation in semi-arid grazing systems. Ecology 82:50–61

    Article  Google Scholar 

  • Iron D, Ward MJ (2004) The stability and dynamics of hot-spot solutions to two one-dimensional microwave heating models. Anal Appl 02:21–70

    Article  MathSciNet  MATH  Google Scholar 

  • Kealy BJ, Wollkind DJ (2012) A nonlinear stability analysis of vegetative turing pattern formation for an interaction–diffusion plant-surface water model system in an arid flat environment. Bull Math Biol 74:803–833

    Article  MathSciNet  MATH  Google Scholar 

  • Kéfi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis V, ElAich A, de Ruiter P (2007) Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–217

    Article  Google Scholar 

  • Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284:1826–1828

    Article  Google Scholar 

  • Kletter A, von Hardenberg J, Meron E, Provenzale A (2009) Patterned vegetation and rainfall intermittency. J Theor Biol 256:574–583

    Article  MathSciNet  MATH  Google Scholar 

  • Kyriazopoulos P, Nathan J, Meron E (2014) Species coexistence by front pinning. Ecol Complex 20:271–281

    Article  Google Scholar 

  • Marasco A, Iuorio A, Carteni F, Bonanomi G, Tartakovsky DM, Mazzoleni S, Giannino F (2014) Vegetation pattern formation due to interactions between water availability and toxicity in plant–soil feedback. Bull Math Biol 76:2866–2883

    Article  MathSciNet  MATH  Google Scholar 

  • Meron E (2012) Pattern-formation approach to modelling spatially extended ecosystems. Ecol Model 234:70–82

    Article  Google Scholar 

  • Meron E (2016) Pattern formation—a missing link in the study of ecosystem response to environmental changes. Math Biosci 271:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Meron E (2018) From patterns to function in living systems: dryland ecosystems as a case study. Annu Rev Condens Matter Phys 9:79–103

    Article  Google Scholar 

  • Montaña C (1992) The colonization of bare areas in two-phase mosaics of an arid ecosystem. J Ecol 80:315–327

    Article  Google Scholar 

  • Montaña C, Lopez-Portillo J, Mauchamp A (1990) The response of two woody species to the conditions created by a shifting ecotone in an arid ecosystem. J Ecol 78:789–798

    Article  Google Scholar 

  • Moreno-de las Heras MM, Saco PM, Willgoose GR, Tongway DJ (2012) Variations in hydrological connectivity of Australian semiarid landscapes indicate abrupt changes in rainfall-use efficiency of vegetation. J Geophys Res G Biogeosci 117:G03009

  • Müller J (2013) Floristic and structural pattern and current distribution of tiger bush vegetation in Burkina Faso (West Africa), assessed by means of belt transects and spatial analysis. Appl Ecol Environ Res 11:153–171

    Article  Google Scholar 

  • Nathan J, von Hardenberg J, Meron E (2013) Spatial instabilities untie the exclusion-principle constraint on species coexistence. J Theor Biol 335:198–204

    Article  MathSciNet  MATH  Google Scholar 

  • Pelletier JD, De Long SB, Orem CA, Becerra P, Compton K, Gressett K, Lyons-Baral J, McGuire LA, Molaro JL, Spinler JC (2012) How do vegetation bands form in dry lands? Insights from numerical modeling and field studies in southern Nevada, USA. J Geophys Res F Earth Surf 117:F04026

    Google Scholar 

  • Penny GG, Daniels KE, Thompson SE (2013) Local properties of patterned vegetation: quantifying endogenous and exogenous effects. Philos Trans Soc R London Ser A 371:20120359

    Article  Google Scholar 

  • Potapov AB, Hillen T (2005) Metastability in chemotaxis models. J Dyn Differ Equ 17:293–330

    Article  MathSciNet  MATH  Google Scholar 

  • Pueyo Y, Kéfi S, Alados CL, Rietkerk M (2008) Dispersal strategies and spatial organization of vegetation in arid ecosystems. Oikos 117:1522–1532

    Article  Google Scholar 

  • Pueyo Y, Kéfi S, Díaz-Sierra R, Alados C, Rietkerk M (2010) The role of reproductive plant traits and biotic interactions in the dynamics of semiarid plant communities. Theor Popul Biol 78:289–297

    Article  MATH  Google Scholar 

  • Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernandez RJ, Herrick JE, Huber- Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification: building a science for dryland development. Science 316:847–851

    Article  Google Scholar 

  • Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23:169–175

    Article  Google Scholar 

  • Rietkerk M, Ketner P, Burger J, Hoorens B, Olff H (2000) Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa. Plant Ecol 148:207–224

    Article  Google Scholar 

  • Rietkerk M, Boerlijst MC, van Langevelde F, HilleRisLambers R, van de Koppel J, Kumar L, Prins HHT, de Roos AM (2002) Self-organization of vegetation in arid ecosystems. Am Nat 160:524–530

    Article  Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–1929

    Article  Google Scholar 

  • Rodriguez-Iturbe I, Porporato A, Ridolfi L, Isham V, Coxi DR (1999) Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. Proc R Soc Lond A 455:3789–3805

    Article  MATH  Google Scholar 

  • Saco PM, Moreno-de las Heras M, Keesstra S, Baartman J, Yetemen O, Rodriguez JF (2018) Vegetation and soil degradation in drylands: non linear feedbacks and early warning signals. Curr Opin Environ Sci Health 5:67–72

    Article  Google Scholar 

  • Salvucci GD (2001) Estimating the moisture dependence of root zone water loss using conditionally averaged precipitation. Water Resour Res 37:1357–1365

    Article  Google Scholar 

  • Scheiter S, Higgins S, Weissing AEFJ, Geber EMA (2007) Partitioning of root and shoot competition and the stability of savannas. Am Nat 170:587–601

    Article  Google Scholar 

  • Seghieri J, Galle S, Rajot J, Ehrmann M (1997) Relationships between soil moisture and growth of herbaceous plants in a natural vegetation mosaic in Niger. J Arid Environ 36:87–102

    Article  Google Scholar 

  • Serra-Diaz JM, Maxwell C, Lucash MS, Scheller RM, Laflower DM, Miller AD, Tepley AJ, Epstein HE, Anderson-Teixeira KJ, Thompson JR (2018) Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the twenty-first century. Sci Rep 8:6749

    Article  Google Scholar 

  • Sheffer E, Hardenberg J, Yizhaq H, Shachak M, Meron E, Blasius B (2013) Emerged or imposed: a theory on the role of physical templates and selforganisation for vegetation patchiness. Ecol Lett 16:127–139

    Article  Google Scholar 

  • Sherratt JA (2005) An analysis of vegetation stripe formation in semi-arid landscapes. J Math Biol 51:183–197

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2010) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments I. Nonlinearity 23:2657–2675

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2011) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments II: patterns with the largest possible propagation speeds. Proc R Soc Lond A 467:3272–3294

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2013a) History-dependent patterns of whole ecosystems. Ecol Complex 14:8–20

    Article  Google Scholar 

  • Sherratt JA (2013b) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments III: the transition between homoclinic solutions. Physica D 242:30–41

    Article  MATH  Google Scholar 

  • Sherratt JA (2013c) Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments IV: slowly moving patterns and their stability. SIAM J Appl Math 73:330–350

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA (2013d) Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments V: the transition from patterns to desert. SIAM J Appl Math 73:1347–1367

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA, Lord GJ (2007) Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor Popul Biol 71:1–11

    Article  MATH  Google Scholar 

  • Siero E (2018) Nonlocal grazing in patterned ecosystems. J Theor Biol 436:64–71

    Article  MathSciNet  MATH  Google Scholar 

  • Siero E, Siteur K, Doelman A, van de Koppel J, Rietkerk M, Eppinga MB (2019) Grazing away the resilience of patterned ecosystems. Am Nat 193:472–480

    Article  Google Scholar 

  • Siteur K, Siero E, Eppinga MB, Rademacher JD, Doelman A, Rietkerk M (2014a) Beyond turing: the response of patterned ecosystems to environmental change. Ecol Complex 20:81–96

    Article  MATH  Google Scholar 

  • Siteur K, Eppinga MB, Karssenberg D, Baudena M, Bierkens MF, Rietkerk M (2014b) How will increases in rainfall intensity affect semiarid ecosystems? Water Resour Res 50:5980–6001

    Article  Google Scholar 

  • Sprugel DG (1991) Disturbance, equilibrium, and environmental variability: What is ‘natural’ vegetation in a changing environment? Biol Conserv 58:1–18

    Article  Google Scholar 

  • Svenning J-C, Sandel B (2013) Disequilibrium vegetation dynamics under future climate change. Am J Bot 100:1266–1286

    Article  Google Scholar 

  • Synodinos AD, Tietjen B, Jeltsch F (2015) Facilitation in drylands: modeling a neglected driver of savanna dynamics. Ecol Model 304:11–21

    Article  Google Scholar 

  • Thiery JM, D’Herbès J-M, Valentin C (1995) A model simulating the genesis of banded vegetation patterns in Niger. J Ecol 83:497–507

    Article  Google Scholar 

  • Thompson SE, Harman CJ, Heine P, Katul GG (2010) Vegetation-infiltration relationships across climatic and soil type gradients. J Geophys Res G Biogeosci 115:G02023

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, p 296

    Google Scholar 

  • Tongway DJ, Ludwig JA (1990) Vegetation and soil patterning in semi-arid mulga lands of Eastern Australia. Aust J Ecol 15:23–34

    Article  Google Scholar 

  • Tzuk O, Ujjwal SR, Fernandez-Oto C, Seifan M, Meron E (2019) Interplay between exogenous and endogenous factors in seasonal vegetation oscillations. Sci Rep 9:354

    Article  Google Scholar 

  • United Nations Convention to Combat Desertification (2017) The global land outlook. Version first edition, Bonn, Germany

  • United Nations Food and Agriculture Organization (2005) Livestock sector briefs

  • Ursino N, Callegaro C (2016) Diversity without complementarity threatens vegetation patterns in arid lands. Ecohydrology 9:1187–1195

    Article  Google Scholar 

  • Ursino N, Contarini S (2006) Stability of banded vegetation patterns under seasonal rainfall and limited soil moisture storage capacity. Adv Water Resour 29:1556–1564

    Article  Google Scholar 

  • Valentin C, d’Herbès J, Poesen J (1999) Soil and water components of banded vegetation patterns. CATENA 37:1–24

    Article  Google Scholar 

  • van der Stelt S, Doelman A, Hek G, Rademacher JDM (2013) Rise and fall of periodic patterns for a generalized Klausmeier–Gray–Scott model. J Nonlinear Sci 23:39–95

    Article  MathSciNet  MATH  Google Scholar 

  • White LP (1971) Vegetation stripes on sheet wash surfaces. J Ecol 59:615–622

    Article  Google Scholar 

  • Worrall GA (1959) The Butana grass patterns. J Soil Sci 10:34–53

    Article  Google Scholar 

  • Zelnik YR, Kinast S, Yizhaq H, Bel G, Meron E (2013) Regime shifts in models of dryland vegetation. Philos Trans R Soc Lond Ser A 371:20120358

    Article  MathSciNet  MATH  Google Scholar 

  • Zelnik YR, Gandhi P, Knobloch E, Meron E (2018) Implications of tristability in pattern-forming ecosystems. Chaos Interdiscip J Nonlinear Sci 28:033609

    Article  MathSciNet  Google Scholar 

  • Zimmerman JK, Comita LS, Thompson J, Uriarte M, Brokaw N (2010) Patch dynamics and community metastability of a subtropical forest: compound effects of natural disturbance and human land use. Landsc Ecol 25:1099–1111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Eigentler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lukas Eigentler was supported by The Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training funded by the UK Engineering and Physical Sciences Research Council (Grant EP/L016508/01), the Scottish Funding Council, Heriot-Watt University and the University of Edinburgh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eigentler, L., Sherratt, J.A. Metastability as a Coexistence Mechanism in a Model for Dryland Vegetation Patterns. Bull Math Biol 81, 2290–2322 (2019). https://doi.org/10.1007/s11538-019-00606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00606-z

Keywords

Navigation