Skip to main content
Log in

Number of Source Patches Required for Population Persistence in a Source–Sink Metapopulation with Explicit Movement

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a simple metapopulation model with explicit movement of individuals between patches, in which each patch is either a source or a sink. We prove that similarly to the case of patch occupancy metapopulations with implicit movement, there exists a threshold number of source patches such that the population potentially becomes extinct below the threshold and established above the threshold. In the case where the matrix describing the movement of populations between spatial locations is irreducible, the result is global; further, assuming a complete mobility graph with equal movement rates, we use the principle of equitable partitions to obtain an explicit expression for the threshold. Brief numerical considerations follow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agaev R, Chebotarev P (2005) On the spectra of nonsymmetric Laplacian matrices. Linear Algebra Appl 399:157–168

    Article  MathSciNet  MATH  Google Scholar 

  • Allen LJS (1987) Persistence, extinction, and critical patch number for island populations. J Math Biol 24(6):617–625

    Article  MathSciNet  MATH  Google Scholar 

  • Amarasekare P (2004) The role of density-dependent dispersal in source-sink dynamics. J Theor Biol 226(2):159–168

    Article  MathSciNet  Google Scholar 

  • Arditi R, Lobry C, Sari T (2015) Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation. Theor Popul Biol 106:45–59

    Article  MATH  Google Scholar 

  • Arino J (2017) Spatio-temporal spread of infectious pathogens of humans. Infect Dis Model 2:218–228

    Google Scholar 

  • Bansaye V, Lambert A (2013) New approaches to source-sink metapopulations decoupling demography and dispersal. Theor Popul Biol 88:31–46

    Article  MATH  Google Scholar 

  • Bascompte J (2003) Extinction thresholds: insights from simple models. Ann Zool Fennici 40:99–114

    Google Scholar 

  • Bascompte J, Possingham H, Roughgarden J (2002) Patchy populations in stochastic environments: critical number of patches for persistence. Am Nat 159(2):128–137

    Article  Google Scholar 

  • Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences. Classics in applied mathematics, vol 9. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Deutsch E, Neumann M (1985) On the first and second order derivatives of the Perron vector. Linear Algebra Appl 71:57–76

    Article  MathSciNet  MATH  Google Scholar 

  • Dias PC (1996) Sources and sinks in population biology. Trends Ecol Evol 11(8):326–330

    Article  Google Scholar 

  • Eriksson O (1996) Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77:248–258

    Article  Google Scholar 

  • Evans SN, Ralph PL, Schreiber SJ, Sen A (2013) Stochastic population growth in spatially heterogeneous environments. J Math Biol 66(3):423–476

    Article  MathSciNet  MATH  Google Scholar 

  • Fiedler M (2008) Special matrices and their applications in numerical mathematics, 2nd edn. Dover, New York

    MATH  Google Scholar 

  • Godsil C, Royle GF (2013) Algebraic graph theory. Graduate texts in mathematics, vol 207. Springer, New York

    Google Scholar 

  • Gravel D, Guichard F, Loreau M, Mouquet N (2010) Source and sink dynamics in meta-ecosystems. Ecology 91(7):2172–2184

    Article  Google Scholar 

  • Gyllenberg M, Hanski I (1997) Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape. Theor Popul Biol 52(3):198–215

    Article  MATH  Google Scholar 

  • Hanski I (1985) Single-species spatial dynamics may contribute to long-term rarity and commonness. Ecology 66(2):335–343

    Article  Google Scholar 

  • Hanski I (1991) Single-species metapopulation dynamics: concepts, models and observations. Biol J Linn Soc 42(1–2):17–38

    Article  Google Scholar 

  • Hastings A (1982) Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates. J Math Biol 16(1):49–55

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings A (1991) Structured models of metapopulation dynamics. Biol J Linn Soc 42(1–2):57–71

    Article  Google Scholar 

  • Hirsch MW (1984) The dynamical systems approach to differential equations. Bull Am Math Soc 11(1):1–64

    Article  MathSciNet  MATH  Google Scholar 

  • Holt RD (1985) Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor Popul Biol 28(2):181–208

    Article  MathSciNet  MATH  Google Scholar 

  • Horn RA, Johnson CR (1991) Topics in matrix analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Horn RA, Johnson CR (2013) Matrix analysis, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Keymer JE, Marquet PA, Velasco-Hernández JX, Levin SA (2000) Extinction thresholds and metapopulation persistence in dynamic landscapes. Am Nat 156(5):478–494

    Article  Google Scholar 

  • Kuno E (1981) Dispersal and the persistence of populations in unstable habitats: a theoretical note. Oecologia 49(1):123–126

    Article  Google Scholar 

  • Levin SA (1974) Dispersion and population interactions. Am Nat 108(960):207–228

    Article  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Am Entomol 15(3):237–240

    Google Scholar 

  • Lewontin RC, Cohen D (1969) On population growth in a randomly varying environment. Proc Natl Acad Sci 62(4):1056–1060

    Article  MathSciNet  Google Scholar 

  • Matsumoto H, Seno H (1995) On predator invasion into a multi-patchy environment of two kinds of patches. Ecol Model 79(1):131–147

    Article  Google Scholar 

  • Metz JAJ, De Jong TJ, Klinkhamer PGL (1983) What are the advantages of dispersing: a paper by kuno explained and extended. Oecologia 57(1–2):166–169

    Article  Google Scholar 

  • Namba T (2007) Dispersal-mediated coexistence of indirect competitors in source-sink metacommunities. Jpn J Ind Appl Math 24(1):39–55

    Article  MathSciNet  MATH  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132(5):652–661

    Article  Google Scholar 

  • Rael R, Taylor C (2018) A flow network model for animal movement on a landscape with application to invasion. Theor Ecol 11:271–280

    Article  Google Scholar 

  • Smith HL (1995) Monotone dynamical systems. Mathematical surveys and monographs, vol 41. American Mathematical Society, Providence

    Google Scholar 

  • Takeuchi Y (1989) Cooperative systems theory and global stability of diffusion models. Acta Appl Math 14(1–2):49–57

    Article  MathSciNet  MATH  Google Scholar 

  • Tromeur E, Rudolf L, Gross T (2016) Impact of dispersal on the stability of metapopulations. J Theor Biol 392:1–11

    Article  MATH  Google Scholar 

  • Varga RS (2010) Geršgorin and his circles. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgements

JA and SK’s work is supported in part by NSERC. NB was supported by the Inria BIOCORE research team. The authors acknowledge comments by Matts Gyllenberg that helped tie this work with the existing literature. The authors thank an anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Arino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arino, J., Bajeux, N. & Kirkland, S. Number of Source Patches Required for Population Persistence in a Source–Sink Metapopulation with Explicit Movement. Bull Math Biol 81, 1916–1942 (2019). https://doi.org/10.1007/s11538-019-00593-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00593-1

Keywords

Navigation