Skip to main content

Advertisement

Log in

Modeling the Spatial Spread of Chagas Disease

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The aim of this work is to understand the spatial spread of Chagas disease, which is primarily transmitted by triatomines. We propose a mathematical model using a system of partial differential reaction–diffusion equations to study and describe the spread of this disease in the human population. We consider the respective subclasses of infected and uninfected individuals within the human and triatomine populations. The dynamics of the infected human subpopulation considers two disease phases: acute and chronic. The human population is considered to be homogeneously distributed across a space to describe the local propagation of Chagas disease by triatomines during a short epidemic period. We determine the basic reproduction number that allows us to assess Chagas disease control measures, and we determine the speed of disease propagation by using traveling wave solutions for our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Argolo AM, Felix M, Pacheco R, Costa J (2008) Doença de Chagas e seus principais vetores no Brasil. Imperial Novo Milênio, Inst Oswaldo Cruz, Rio de Janeiro

  • Abrahan LB, Gorla DE, Catalá SS (2011) Dispersal of Triatoma infestans and other triatominae species in the arid Chaco of Argentina—flying, walking or passive carriage? The importance of walking females. Mem Inst Oswaldo Cruz 106(2):232–239

    Article  Google Scholar 

  • Castañera MB, Aparicio JP, Gürtler RE (2003) A age stage-structured stochastic model of the popualtion dynamic of Triatoma infestans, the main vector of Chagas disease. Ecol Model 162:33–53

    Article  Google Scholar 

  • Catala S, Crocco LB, Morales GF (1997) Trypanosoma cruzi transmission risk index (TcTRI): an epidemiological indicator of Chagas disease vectorial transmission to human. Acta trop 68:285–295

    Article  Google Scholar 

  • Crawford BA, Kribs-Zaleta CM (2013a) Vetor migration and dispersal rates for sylvatic T. cruzi transmission. Ecol Complex 14:145–156

    Article  Google Scholar 

  • Crawford BA, Kribs-Zaleta CM, Ambartsoumian G (2013b) Invasion speed in cellular automaton models for T. cruzi vector migration. Bull Math Biol 75:1052–1081

    Article  MathSciNet  MATH  Google Scholar 

  • Crawford BA, Kribs-Zaleta CM (2014) A metapopualtion model for T. cruzi sylvatic transmission with vector migration. Math Biosci Eng 11(3):471–509

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen JE, Gürtler RE (2001) Modeling household transmission of American trypanosomiasis. Science 293:694698

    Google Scholar 

  • Cruz-Pacheco G, Esteva L, Vargas C (2012) Control measures for Chagas disease. Math Biosci 237:49–69

    Article  MathSciNet  MATH  Google Scholar 

  • Das P, Mukherjee D (2006) Qualitative study of a model of Chagas disease. Math Comput Model 43:413–422

    Article  MathSciNet  MATH  Google Scholar 

  • Dias JCP, Coura JR (1997) Clínica e terapêutica da doença de chagas: uma abordagem prática para o clínico geral. SciELO- Editora FIOCRUZ, Rio de Janeiro

  • EMedicine (Medscape) (2016) Chagas disease (American trypanosomiasis). http://emedicine.medscape.com/article/214581-overview

  • Forattini OP, Rabello EX, Pattoli DBG (1972) Aspectos ecológicos da Tripanossomose Americana, IV— mobilidade de Triatoma arthurneivai em seus ecótopos naturais. Rev Saúd Públ 6:183–187

    Article  Google Scholar 

  • Fundação Oswaldo Cruz (2014) http://www.fiocruz.br/ioc/cgi/cgilua.exe/sys/start.htm?infoid=1585&sid=32

  • Howard EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P (2014) Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG 121(1):22–33. https://doi.org/10.1111/1471-0528.12396

    Article  Google Scholar 

  • Instituto Brasileiro de Geografia estátisitica (IBGE) (2017) https://www.ibge.gov.br

  • Institute for One World Health (2014) Chagas disease: a Latin American nemesis. http://s3.amazonaws.com/zanran_storage/www.oneworldhealth.org/ContentPages/15710128.pdf

  • Kribs-Zaleta C (2010) Estimating contact process saturation in sylvatic transmission of Trypanosoma cruzi in the United States. PLoS Negl Trop Dis 4(4):1–13

    Article  Google Scholar 

  • Lazzari CR, Pereira MH, Lorenzo MG (2013) Behavioural biology of Chagas disease vectors. Mem Inst Oswaldo Cruz 108(Suppl. 1):34–47

    Article  Google Scholar 

  • Martcheva M (2015) An introduction to mathematical epidemiology. Springer, Berlin

    Book  MATH  Google Scholar 

  • Mesk M, Mahdjoub T, Gourbière S, Rabinovich JE, Menu F (2016) Invasion speeds of Triatoma dimidata, vector of Chagas disease: an application of orthogonal polynomials method. J Theor Biol 395:126–143

    Article  MATH  Google Scholar 

  • Montoya R, Dias JCP, Coura JR (2003) Chagas disease in a community in southeast Brazil. I. A serologic follow-up study on a vector controlled area. Rev Inst Med Trop Sao Paulo 45(5):269–274

    Article  Google Scholar 

  • Murray JD (2002) Mathematical biology. Springer, Berlin

    MATH  Google Scholar 

  • Murray JD, Stanley FRS, Brown DL (1986) On the spatial spread of rabies among foxes. Proc R Soc Lond Ser B 229:111–150

    Article  Google Scholar 

  • Nunes EV, Campos R, Socorro CG, Tolezano JE, Moreira AAB, Souza HBW, Takiguti CK, Neto VA (1991) O xenodiagnóstico na doena de Chagas: influência do sexo dos triatomíneos. Rev Soc Bras Med Trop 24(4):245–250

    Article  Google Scholar 

  • Okubo A, Maini PK, Williamson MH, Murray JD (1989) On the spatial spread of the grey squirrel in Britain. Proc R Soc Lond Ser B 238(1291):113–125

    Article  Google Scholar 

  • Pan American Health Organization/World Health Organization (2013) http://www.paho.org/bra/index.php?option=com_content&view=article&id=2541:brasil-dobra-producao-medicamento-contra-doenca-chagas-benzonidazol&Itemid=455

  • Pan American Health Organization (2014) Resolução CD49.R19: Eliminação de doenças negligenciadas e outras infecções relacionadas à pobreza. http://www.paho.org/bra/index2.php?option=com_docman&task=doc_view&gid=900&Itemid=

  • Ramirez-Sierra MJ, Herrera-Aguilar M, Gourbire S, Dumonteil E (2010) Patterns of house infestation dynamics by non-domiciliated Triatoma dimidiata reveal a spatial gradient of infestation in rural villages and potential insect manipulation by Trypanosoma cruzi. Trop Med Int Health 15:77–86

    Article  Google Scholar 

  • Rabinovich JE (1972) Vital statistics of Triatominae (Hemiptera: Reduviidae) under laboratory conditions: I. Triatoma infestans. Klug J Med Ent 9:351–370

    Article  Google Scholar 

  • Rabinovich JE, Himschoot P (1990) A population-dynamics simulation model of the main vectors of Chagas disease transmission, Rhoudnius prolixus and Triatoma infestans. Ecol Model 52:249–266

    Article  Google Scholar 

  • Rabinovich JE, Wisnivesky-Colli C, Solarz ND, Gürtler RE (1990) Probability of transmission of Chagas disease by Triatoma infestans (Hemiptera: Reduviidae) in an endemic area of Santiago del Estero, Argentina. Bull World Health Organ 68(6):737–746

    Google Scholar 

  • Ramsey JM, Townsend PA, Carmona-Castro O, Moo-Llanes DA, Nakazawa Y, Butrick M, Tun-Ku E, de la Cruz-Flix K, Ibarra-Cerdea CN (2015) Atlas of Mexican triatominae (rediviidae: hemiptera) and vector transmission of Chagas disease. Mem Inst Oswaldo Cruz 110(3):339–352

    Article  Google Scholar 

  • Ribeiro I, Sevcsik A, Alves F, Diap G, Don R, Harhay MO, Chang S, Pecoul B (2009) New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl Trop Dis 3(7):e484

    Article  Google Scholar 

  • Schofield CJ, Lehane MJ, McEwan P, Catala SS, Gorla DE (1991) Dispersive flight by Triatoma sordida. Trans R Soc Trop Med Hyg 85:676–678

    Article  Google Scholar 

  • Schofield CJ, Lehane MJ, McEwan P, Catala SS, Gorla DE (1992) Dispersive flight by Triatoma infestans under natural climatic conditions in Argentina. Med Vet Entomol 6:51–56

    Article  Google Scholar 

  • Silva Sousa A Jr, Cunha Menezes, Palcios VR, Socorro Miranda C, Farias da Costa RJ, Catete CP, Chagasteles EJ, Ribeiro Raithy Pereira AL, Veiga Gonçalves N (2017) Space-temporal analysis of Chagas disease and its environmental and demographic risk factors in the municipality of Barcarena. Pará. Brazil. Rev Bras Epidemiol 20(4):742–755 (in Portuguese)

  • Slimi R, El Yacoubi S, Dumonteil E, Gourbiere S (2009) A cellular automata model for Chagas disease. Appl Math Model 33:1072–1085

    Article  MathSciNet  MATH  Google Scholar 

  • Spagnuolo AM, Shillor M, Stryker GA (2011) A model for Chagas disease with controlled spraying. J Biol Dyn 190:39–69

    MathSciNet  MATH  Google Scholar 

  • Spagnuolo AM, Shillor M, Kingsland L, Thatcher A, Toeniskoetter M, Wood B (2012) A logistic delay differential equation model for Chagas disease with interrupted spraying schedules. J Biol Dyn 6(2):377–394

    Article  MathSciNet  Google Scholar 

  • Van den Driessche P, Watmough J (2008) Further notes on the basic reproduction number. In: Mathematical epidemiology, Springer, Berlin, pp 159–178

  • Velasco-Hernandez JX (1991) An epidemiological model for the dynamics of Chagas disease. BioSyst 26:127–134

    Article  Google Scholar 

  • Velasco-Hernandez JX (1994) A model for Chagas disease involving transmission by vectors and blood transfusion. Theor Popul Biol 46:1–31

    Article  MATH  Google Scholar 

  • Vianna EN (2011) Dinâmica de reinfestações por triatomíneos e alterações ambientais na ecoepidemiologia da doença de Chagas em área de Triatoma sordida (Hemiptera, Reduviidae, Triatominae) no norte de Minas Gerais, Brasil. PhD thesis. UFMG Instituto de Ciências Biológicas, Minas Gerais

  • Wisnivesky CC, Gürtler RE, Solarz ND, Schweigmann NJ, Pietrokovsky SM, Alberti A, Flo J (1993) Dispersive flight and house invasion by Triatoma guasayana and Triatoma sordida in Argentina. Mem Inst Oswaldo Cruz 88(1):27–32

    Article  Google Scholar 

  • Yang HM (2014) The basic reproduction number obtained from jacobian and next generation matrices—a case study of dengue transmission modelling. Biosystem 216:52–75

    Article  Google Scholar 

  • Yang HM (2017) The transovarial transmission in the dynamic of dengue infection: epidemiological implication and thresholds. Math Biosci 286:1–15

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for their comments and suggestions to improve the quality of this paper. The first author acknowledges a grant from CAPES and UFABC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norberto Aníbal Maidana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Vanessa Steindorf: Fellowship CAPES - UFABC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steindorf, V., Maidana, N.A. Modeling the Spatial Spread of Chagas Disease. Bull Math Biol 81, 1687–1730 (2019). https://doi.org/10.1007/s11538-019-00581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00581-5

Keywords

Navigation