Skip to main content

Advertisement

Log in

What Controls the Acute Viral Infection Following Yellow Fever Vaccination?

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Does target cell depletion, innate immunity, or adaptive immunity play the dominant role in controlling primary acute viral infections? Why do some individuals have higher peak virus titers than others? Answering these questions is a basic problem in immunology and can be particularly difficult in humans due to limited data, heterogeneity in responses in different individuals, and limited ability for experimental manipulation. We address these questions for infections following vaccination with the live attenuated yellow fever virus (YFV-17D) by analyzing viral load data from 80 volunteers. Using a mixed effects modeling approach, we find that target cell depletion models do not fit the data as well as innate or adaptive immunity models. Examination of the fits of the innate and adaptive immunity models to the data allows us to select a minimal model that gives improved fits by widely used model selection criteria (AICc and BIC) and explains why it is hard to distinguish between the innate and adaptive immunity models. We then ask why some individuals have over 1000-fold higher virus titers than others and find that most of the variation arises from differences in the initial/maximum growth rate of the virus in different individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akondy RS, Johnson PL, Nakaya HI, Edupuganti S, Mulligan MJ, Lawson B, Miller JD, Pulendran B, Antia R, Ahmed R (2015) Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination. PNAS 112(10):3050–3055

    Article  Google Scholar 

  • Antia R, Koella JC (1994) A model of non-specific immunity. J Theor Biol 168(2):141–150

    Article  Google Scholar 

  • Antia R, Levin BR, May RM (1994) Within-host population dynamics and the evolution and maintenance of microparasite virulence. Am Nat 144(3):457–472

  • Antia R, Yates A, de Roode JC (2008) The dynamics of acute malaria infections. i. effect of the parasite’s red blood cell preference. Proc Biol Sci 275(1641):1449–58. https://doi.org/10.1098/rspb.2008.0198

    Article  Google Scholar 

  • Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS (2006) Kinetics of influenza a virus infection in humans. J Virol 80(15):7590–7599

    Article  Google Scholar 

  • Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HW (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447(7142):326–329

    Article  Google Scholar 

  • Beauchemin CA, Handel A (2011) A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health 11(Suppl 1):S7

    Article  Google Scholar 

  • Ben-Shachar R, Koelle K (2015) Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary dengue infections. J R Soc Interface 12(103):20140,886

    Article  Google Scholar 

  • Best K, Guedj J, Madelain V, de Lamballerie X, Lim SY, Osuna CE, Whitney JB, Perelson AS (2017) Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies. PNAS 114(33):8847–8852

    Article  Google Scholar 

  • Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, Thompson EA, Fraser KA, Rosato PC, Filali-Mouhim A et al (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532(7600):512–516

    Article  Google Scholar 

  • Canini L, Carrat F (2011) Population modeling of influenza A/H1N1 virus kinetics and symptom dynamics. J Virol 85(6):2764–2770

    Article  Google Scholar 

  • Carr EJ, Dooley J, Garcia-Perez JE, Lagou V, Lee JC, Wouters C, Meyts I, Goris A, Boeckxstaens G, Linterman MA, Liston A (2016) The cellular composition of the human immune system is shaped by age and cohabitation. Nat Immunol 17(4):461–468

  • Chamberlin TC (1890) The method of multiple working hypotheses: with this method the dangers of parental affection for a favorite theory can be circumvented. Science 15:92–96. https://doi.org/10.1126/science.148.3671.754

    Google Scholar 

  • Davis MM (2008) A prescription for human immunology. Immunity 29(6):835–838

    Article  Google Scholar 

  • Edupuganti S, Eidex RB, Keyserling H, Akondy RS, Lanciotti R, Orenstein W, del Rio C, Pan Y, Querec T, Lipman H, Barrett A, Ahmed R, Teuwen D, Cetron M, Mulligan MJ (2013) A randomized, double-blind, controlled trial of the 17D yellow fever virus vaccine given in combination with immune globulin or placebo: comparative viremia and immunogenicity. Am J Trop Med Hyg 88(1):172–177

    Article  Google Scholar 

  • Elemans M, Thiébaut R, Kaur A, Asquith B (2011) Quantification of the relative importance of CTL, B cell, NK cell, and target cell limitation in the control of primary SIV-infection. PLOS Comput Biol 7(3):e1001,103

    Article  Google Scholar 

  • Guedj J, Thiébaut R, Commenges D (2007) Maximum likelihood estimation in dynamical models of HIV. Biometrics 63(4):1198–1206

    Article  MathSciNet  MATH  Google Scholar 

  • Handel A, Longini IM, Antia R (2010) Towards a quantitative understanding of the within-host dynamics of influenza A infections. J R Soc Interface 7(42):35–47

    Article  Google Scholar 

  • Handel A, Longini IM Jr, Antia R (2007) Neuraminidase inhibitor resistance in influenza: assessing the danger of its generation and spread. PLoS Comput Biol 3(12):e240. https://doi.org/10.1371/journal.pcbi.0030240

    Article  MathSciNet  Google Scholar 

  • Handel A, Longini IM Jr, Antia R (2010) Towards a quantitative understanding of the within-host dynamics of influenza a infections. J R Soc Interface 7(42):35–47. https://doi.org/10.1098/rsif.2009.0067

    Article  Google Scholar 

  • Haydon DT, Matthews L, Timms R, Colegrave N (2003) Top-down or bottom-up regulation of intra-host blood-stage malaria: do malaria parasites most resemble the dynamics of prey or predator? Proc Biol Sci 270(1512):289–98. https://doi.org/10.1098/rspb.2002.2203

    Article  Google Scholar 

  • Hilborn R, Mangel M (1997) The ecological detective: confronting models with data. Monographs in population biology 28. Princeton University Press, Princeton

    Google Scholar 

  • Kochin BF, Yates AJ, de Roode JC, Antia R (2010) On the control of acute rodent malaria infections by innate immunity. PLoS One 5(5):e10,444. https://doi.org/10.1371/journal.pone.0010444

    Article  Google Scholar 

  • Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal 49(4):1020–1038

    Article  MathSciNet  MATH  Google Scholar 

  • Le D, Miller JD, Ganusov VV (2015) Mathematical modeling provides kinetic details of the human immune response to vaccination. Front Cell Infect Microbiol 4:1–13

    Article  Google Scholar 

  • Li Y, Handel A (2014) Modeling inoculum dose dependent patterns of acute virus infections. J Theor Biol 347:63–73

    Article  Google Scholar 

  • Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46(3):673–687

  • McQueen PG, McKenzie FE (2004) Age-structured red blood cell susceptibility and the dynamics of malaria infections. PNAS 101(24):9161–9166

    Article  Google Scholar 

  • Miao H, Hollenbaugh JA, Zand MS, Holden-Wiltse J, Mosmann TR, Perelson AS, Wu H, Topham DJ (2010) Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus. J Virol 84(13):6687–6698

    Article  Google Scholar 

  • Mideo N, Savill NJ, Chadwick W, Schneider P, Read AF, Day T, Reece SE (2011) Causes of variation in malaria infection dynamics: insights from theory and data. Am Nat 178(6):E174–88. https://doi.org/10.1086/662670

    Article  Google Scholar 

  • Monath T, Staples J, Barrett A (2012) Yellow fever vaccine, 6th edn. Elsevier Saunders, Philadelphia, pp 870–968

    Google Scholar 

  • Osborne LC, Monticelli LA, Nice TJ, Sutherland TE, Siracusa MC, Hepworth MR, Tomov VT, Kobuley D, Tran SV, Bittinger K, Bailey AG, Laughlin AL, Bouvher JL, Wherry EJ, Bushman DF, Allen JE, Virgin HW, Artis D (2014) Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345(6196):578–582

  • Painter SD, Ovsyannikova IG, Poland GA (2015) The weight of obesity on the human immune response to vaccination. Vaccine 33(36):4422–4429

    Article  Google Scholar 

  • Pawelek KA, Huynh GT, Quinlivan M, Cullinane A, Rong L, Perelson AS (2012) Modeling within-host dynamics of influenza virus infection including immune responses. PLoS Comput Biol 8(6):e1002,588–e1002,588

    Article  MathSciNet  Google Scholar 

  • Perelson AS (2002) Modelling viral and immune system dynamics. Nat Rev Immunol 2(1):28–36

    Article  Google Scholar 

  • Phillips AN (1996) Reduction of hiv concentration during acute infection: independence from a specific immune response. Science 271(5248):497–499

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Gr. Stat. 4(1):12–35

    Google Scholar 

  • Poland G, Ovsyannikova I, Jacobson R, Smith D (2007) Heterogeneity in vaccine immune response: the role of immunogenetics and the emerging field of vaccinomics. Clin. Pharmacol. Ther. 82(6):653–664

    Article  Google Scholar 

  • Rai D, Pham NLL, Harty JT, Badovinac VP (2009) Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts. J Immunol 183(12):7672–7681

    Article  Google Scholar 

  • Regoes RR, Antia R, Garber DA, Silvestri G, Feinberg MB, Staprans SI (2004) Roles of target cells and virus-specific cellular immunity in primary simian immunodeficiency virus infection. J Virol 78(9):4866–75

    Article  Google Scholar 

  • Reynolds SR, Celis E, Sette A, Oratz R, Shapiro RL, Johnston D, Fotino M, Bystryn JC (1998) Hla-independent heterogeneity of CD8+ T cell responses to MAGE-3, Melan-A/MART-1, gp100, tyrosinase, MC1R, and TRP-2 in vaccine-treated melanoma patients. J Immunol 161(12):6970–6976

    Google Scholar 

  • Saenz RA, Quinlivan M, Elton D, MacRae S, Blunden AS, Mumford JA, Daly JM, Digard P, Cullinane A, Grenfell BT, McCauley JW, Wood JLN, Gog JR (2010) Dynamics of influenza virus infection and pathology. J Virol 84(8):3974–3983

    Article  Google Scholar 

  • Samson A, Lavielle M, Mentré F (2006) Extension of the saem algorithm to left-censored data in nonlinear mixed-effects model: application to HIV dynamics model. Comput Stat Data Anal 51(3):1562–1574

    Article  MathSciNet  MATH  Google Scholar 

  • Smith AM, Adler FR, Ribeiro RM, Gutenkunst RN, McAuley JL, McCullers JA, Perelson AS (2013) Kinetics of coinfection with influenza A virus and streptococcus pneumoniae. PLoS Pathog 9(3):e1003,238

    Article  Google Scholar 

  • Smith AM, Adler FR, Ribeiro RM, Gutenkunst RN, McAuley JL, McCullers JA, Perelson AS (2013) Kinetics of coinfection with influenza a virus and streptococcus pneumoniae. PLoS Pathog 9(3):e1003,238. https://doi.org/10.1371/journal.ppat.1003238

    Article  Google Scholar 

  • Stafford MA, Corey L, Cao Y, Daar ES, Ho DD, Perelson AS (2000) Modeling plasma virus concentration during primary hiv infection. J Theor Biol 203(3):285–301. https://doi.org/10.1006/jtbi.2000.1076

    Article  Google Scholar 

  • Yap GS, Stevenson MM (1994) Blood transfusion alters the course and outcome of plasmodium chabaudi as infection in mice. Infect Immun 62(9):3761–3765

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Moore.

Additional information

This work was supported by four NIH Grants NIH U54GM111274, NIH R01AI110720 (to R. Antia), NIH U19AI11789102 (to R.Antia and R.Ahmed), and U19AI057266 (to R. Ahmed).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 724 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, J., Ahmed, H., Jia, J. et al. What Controls the Acute Viral Infection Following Yellow Fever Vaccination?. Bull Math Biol 80, 46–63 (2018). https://doi.org/10.1007/s11538-017-0365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0365-3

Keywords

Navigation