Skip to main content

Advertisement

Log in

Time Inhomogeneous Mutation Models with Birth Date Dependence

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The classic Luria–Delbrück model for fluctuation analysis is extended to the case where the split instant distributions of cells are not i.i.d.: the lifetime of each cell is assumed to depend on its birth date. This model takes also into account cell deaths and non-exponentially distributed lifetimes. In particular, it is possible to consider subprobability distributions and to model non-exponential growth. The extended model leads to a family of probability distributions which depend on the expected number of mutations, the death probability of mutant cells, and the split instant distributions of normal and mutant cells. This is deduced from the Bellman–Harris integral equation, written for the birth date inhomogeneous case. A new theorem of convergence for the final mutant counts is proved, using an analytic method. Particular examples like the Haldane model or the case where hazard functions of the split-instant distributions are proportional are studied. The Luria–Delbrück distribution with cell deaths is recovered. A computation algorithm for the probabilities is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen L (2010) An introduction to stochastic processes with applications to biology, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Angerer W (2001) An explicit representation of the Luria–Delbrück distribution. J Math Biol 42(2):145–174

    Article  MATH  MathSciNet  Google Scholar 

  • Armitage P (1952) The statistical theory of bacterial populations subject to mutation. J R StatSoc B 14:1–40

    MATH  MathSciNet  Google Scholar 

  • Athreya K, Ney P (1972) Branching processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bartlett MS (1978) An introduction to stochastic processes, with special reference to methods and applications, 3rd edn. Cambridge University Press, Cambridge

  • Bellman R, Harris T (1952) On age-dependent binary branching processes. Ann Math 55(2):280–295

    Article  MATH  MathSciNet  Google Scholar 

  • Benjamini I, Peres Y (1994) Markov chains indexed by trees. Ann Probab 22(1):219–243

    Article  MATH  MathSciNet  Google Scholar 

  • Cox D (1972) Regression models and life-tables. J R Stat Soc (Ser B) 34(2):187–220

    MATH  MathSciNet  Google Scholar 

  • Dewanji A, Luebeck E, Moolgavkar S (2005) A generalized Luria–Delbrück model. Math Biosci 197(2):140–152

    Article  MATH  MathSciNet  Google Scholar 

  • Embrechts P, Hawkes J (1982) A limit theorem for tails of discrete infinitely divisible laws with applications to fluctuation theory. J Aust Math Soc Ser A 32:412–422

    Article  MATH  MathSciNet  Google Scholar 

  • Hamon A, Ycart B (2012) Statistics for the Luria–Delbrück distribution. Electron J Stat 6:1251–1272

    Article  MATH  MathSciNet  Google Scholar 

  • Harko T, Lobo F, Mak M (2014) Analytical solutions of the Riccati equation with coefficients satisfying integral or differential conditions with arbitrary functions. Univ J Appl Math 2(2):109–118

    Google Scholar 

  • Houchmandzadeh B (2015) General formulation of Luria-Delbrück distribution of the number of mutants. Phys Rev E Stat Nonlin Soft Matter Phys 92:012719

    Article  MathSciNet  Google Scholar 

  • Kendall D (1952) On the choice of a mathematical model to represent normal bacterial growth. J R Stat Soc B 14(1):41–44

    MATH  MathSciNet  Google Scholar 

  • Kimmel M, Axelrod D (2002) Branching processes in biology. Springer, New York

    Book  MATH  Google Scholar 

  • Komarova NL, Wu L, Baldi P (2007) The fixed-size Luria–Delbrück model with a nonzero death rate. Math Biosci 210(1):253–290

    Article  MATH  MathSciNet  Google Scholar 

  • Kucera V (1973) A review of the matrix Riccati equation. Kybernetika 9(1):42–61

    MATH  MathSciNet  Google Scholar 

  • Lambert A (2005) The branching process with logistic growth. Ann Appl Probab 15(2):1506–1535

    Article  MATH  MathSciNet  Google Scholar 

  • Lea D, Coulson C (1949) The distribution of the number of mutants in bacterial populations. J Genet 49(3):264–285

    Article  Google Scholar 

  • Louhichi S, Ycart B (2015) Exponential growth of bifurcating processes with ancestral dependence. Adv Appl Probab 47(2):545–564

    Article  MATH  MathSciNet  Google Scholar 

  • Luria S, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6):491–511

    Google Scholar 

  • Montgomery-Smith S, Oveys H (2016) Age-dependent branching processes and applications to the Luria–Delbrück experiment. arXiv preprint arXiv:1608.06314

  • Nguyen H (2006) An introduction to random sets. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Pemantle R (1995) Tree-indexed process. Stat Sci 10(2):200–213

    Article  MATH  Google Scholar 

  • Sarkar S (1991) Haldane’s solution of the Luria–Delbrück distribution. Genetics 127:257–261

    Google Scholar 

  • Stewart F, Gordon D, Levin B (1990) Fluctuation analysis: the probability distribution of the number of mutants under different conditions. Genetics 124(1):175–185

    Google Scholar 

  • Tan W (1986) A stochastic Gompertz birth-death process. Stat Probab Lett 4(4):25–28

    Article  MATH  MathSciNet  Google Scholar 

  • Tan W, Piantadosi S (1991) On stochastic growth processes with application to stochastic logistic growth. Stat Sin 1:527–540

    MATH  MathSciNet  Google Scholar 

  • Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. In: Garnier J, Quetelet A (eds) Correspondance mathématique et physique, vol 10. Société Belge de Librairie, Bruxelles, pp 113–121

    Google Scholar 

  • Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S (2010) Robust growth of Escherichia coli. Curr Biol 20:1099–1103

    Article  Google Scholar 

  • Ycart B (2013) Fluctuation analysis: Can estimates be trusted? PLoS ONE 8(12):1–12

    Article  Google Scholar 

  • Ycart B (2014) Fluctuation analysis with cell deaths. J Appl Probab Statist 9(1):13–29

    MATH  Google Scholar 

  • Ycart B, Veziris N (2014) Unbiased estimates of mutation rates under fluctuating final counts. PLoS ONE 9(7):1–10

    Article  Google Scholar 

  • Yule G (1925) A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, F.R.S. Phil Trans R Soc Lond Ser B 213:21–87

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Laboratoire d’Excellence TOUCAN (Toulouse Cancer). The author is grateful to Bernard Ycart for comments on earlier drafts of the paper and to the anonymous referees for helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Mazoyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazoyer, A. Time Inhomogeneous Mutation Models with Birth Date Dependence. Bull Math Biol 79, 2929–2953 (2017). https://doi.org/10.1007/s11538-017-0357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0357-3

Keywords

Mathematics Subject Classification

Navigation