Skip to main content

Advertisement

Log in

Short-Term Antiretroviral Treatment Recommendations Based on Sensitivity Analysis of a Mathematical Model for HIV Infection of CD4+T Cells

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

HIV infection is one of the most difficult infections to control and manage. The most recent recommendations to control this infection vary according to the guidelines used (US, European, WHO) and are not patient-specific. Unfortunately, no two individuals respond to infection and treatment quite the same way. The purpose of this paper is to make use of the uncertainty and sensitivity analysis to investigate possible short-term treatment options that are patient-specific. We are able to identify the most significant parameters that are responsible for ART outcome and to formulate some insights into the ART success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams BM, Banks HT, Davidian M, Kwon H-D, Tran HT, Wynne SN, Rosenberg ES (2005) HIV dynamics: modeling, data analysis, and optimal treatment protocols. J Comput Appl Math 184:10–49

    Article  MathSciNet  MATH  Google Scholar 

  • Bortz DM, Nelson PW (2006) Model selection and mixed-effects modeling of HIV infection dynamics. Bull Math Biol 68(8):2005–2025

    Article  MathSciNet  MATH  Google Scholar 

  • Croicu A-M (2015) Short- and long-term optimal control of a mathematical model for HIV infection of \(CD4^{+} T\) cells. Bull Math Biol 77(11):2035–2071

    Article  MathSciNet  MATH  Google Scholar 

  • Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH (1973) Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 1. Theory. J Chem Phys 59:3873–3878

    Article  Google Scholar 

  • Culshaw R, Ruan S, Spiteri R (2004) Optimal HIV treatment by maximizing immune response. J Math Biol 48(5):545–562

    Article  MathSciNet  MATH  Google Scholar 

  • DiMascio M, Ribeiro RM, Markowitz M, Ho DD, Perelson AS (2004) Modeling the long-term control of viremia in HIV-1 infected patients treated with antiretroviral therapy. Math Biosci 188(1–2):47–62

    Article  MathSciNet  MATH  Google Scholar 

  • Gulik RM, Mellors JW, Havlir D, Eron JJ, Gonzalez C, McMahon D et al (1997) Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 337:734–739

    Article  Google Scholar 

  • Gunthard HF et al (2014) Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society—USA Panel. Clin Rev Educ 312(4):410–425

    Google Scholar 

  • Hadjiandreou MM, Conejeros R, Wilson DI (2009a) Long-term HIV dynamics subject to continuous therapy and structured treatment. Chem Eng Sci 64:1600–1617

    Article  Google Scholar 

  • Hadjiandreou MM, Conejeros R, Wilson DI (2009b) Planning of patient-specific drug-specific optimal HIV treatment strategies. Chem Eng Sci 64:4024–4039

    Article  Google Scholar 

  • Jang T, Kwon H-D, Lee J (2011) Free terminal time optimal control problem of an HIV model based on a conjugate gradient method. Bull Math Biol 73:2408–2429

    Article  MathSciNet  MATH  Google Scholar 

  • Joshi HR (2002) Optimal control of an HIV immunology model. Optim Control Appl Methods 23:199–213

    Article  MathSciNet  MATH  Google Scholar 

  • Karrakchou J, Rachik M, Gourari S (2006) Optimal control and infectiology: application to an HIV/AIDS model. Appl Math Comput 177:806–818

    MathSciNet  MATH  Google Scholar 

  • Kirschner D, Lenhart S, Serbin S (1997) Optimal control of the chemotherapy of HIV. J Math Biol 35:775–792

    Article  MathSciNet  MATH  Google Scholar 

  • Kramer I (1999) Modeling the dynamical impact of HIV on the immune system: viral clearance, infection, and AIDS. Math Comput Modell 29:95–112

    Article  MATH  Google Scholar 

  • Kucherenko S, Feil B, Shah N, Mauntz W (2011) The identification of model effective dimensions using global sensitivity analysis. Reliab Eng Syst Saf 96:440–449

    Article  Google Scholar 

  • Kwon H-D, Lee J, Yang S-D (2012) Optimal control of an age-structured model of HIV infection. Appl Math Comput 219:2766–2779

    MathSciNet  MATH  Google Scholar 

  • Levy JA (2015) Dispelling myths and focusing on notable concepts in HIV pathogenesis. Trends Mol Med 21:341–353

    Article  Google Scholar 

  • Liu Y (2013) Non-intrusive methods for probabilistic uncertainty quantification and global sensitivity analysis in nonlinear stochastic phenomena. Florida State University, Tallahassee

    Google Scholar 

  • Liu RX, Owen AB (2006) Estimating mean dimensionality of analysis of variance decompositions. J Am Stat Assoc 101:712–721

    Article  MathSciNet  MATH  Google Scholar 

  • Louie M et al (2003) Determining the antiviral activity of tenofovir disoproxil fumarate in treatment-naive chronically HIV-1-infected individuals. AIDS 17:1151–1156

    Article  Google Scholar 

  • Maskey S, Guinot V, Price RK (2004) Treatment of precipitation uncertainty in rainfall-runoff modelling: a fuzzy set approach. Adv Water Resour 27(9):889–898

    Article  Google Scholar 

  • Merdan M, Gokdogan A, Yildirim A (2011) On the numerical solution of the model for HIV infection of \(CD4^{+}T\) cells. Comput Math Appl 62:118–123

    Article  MathSciNet  MATH  Google Scholar 

  • Montaner JS, Reiss P, Cooper D, Vella S, Harris M, Conway B et al (1998) A randomized, double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients: the INCAS Trial. Italy, The Netherlands, Canada and Australia Study. J Am Med Assoc 279:930–937

    Article  Google Scholar 

  • Morgan D, Mahe C, Okongo B, Lubega R, Whitworth JA (2002) HIV-1 infection in rural Africa: Is there a difference in median time to aids and survival compared with that in industrialized countries? AIDS 16:597–632

    Article  Google Scholar 

  • Oberkampf WL, Roy CJ (2010) Verification and validation in scientific computing. Cambridge University Press, Cambridge. ISBN 978-0-511-90800-2

    Book  MATH  Google Scholar 

  • Orellana JM (2011) Optimal drug scheduling for HIV therapy efficiency improvement. Biomed Signal Process Control 6:379–386

    Article  Google Scholar 

  • Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-I dynamics in vivo. SIAM Rev 41:3–44

    Article  MathSciNet  MATH  Google Scholar 

  • Perelson AS, Kirschner DE, Boer RD (1993) Dynamics of HIV infection of \(CD4^{+}T\) cells. Math Biosci 114:81–125

    Article  MATH  Google Scholar 

  • Perera N (2003) Deterministic and stochastic models of virus dynamics. PhD thesis, Texas Tech University

  • Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Wiley, Hoboken

    Google Scholar 

  • Roshanfekr M, Farahi MH, Rahbarian R (2014) A different approach of optimal control on an HIV immunology model. Ain Shams Eng J 5:213–219

    Article  Google Scholar 

  • Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys 145:280–297

    Article  MATH  Google Scholar 

  • Saltelli A, Bolando R (1998) An alternative way to compute Fourier amplitude sensitivity test (FAST). Comput Stat Data Anal 26:445–460

    Article  MATH  Google Scholar 

  • Shi S, Nguyen PK, Cabral HJ, Diez-Barroso R, Derry PJ, Kanahara SM, Kumar VA (2016) Development of peptide inhibitors of HIV transmission. Bioact Mater 1–13

  • Simpson L, Gumel AB (2017) Mathematical assessment of the role of pre-exposure prophylaxis on HIV transmission dynamics. Appl Math Comput 293:168–193

    MathSciNet  Google Scholar 

  • Sobol IM (1993) Sensitivity estimates for non-linear mathematical models. Math Model Comput Exp 1:407–414

    MATH  Google Scholar 

  • Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280

    Article  MathSciNet  MATH  Google Scholar 

  • Stengel RF (2008) Mutation and control of the human immunodeficiency virus. Math Biosci 213:93–102

    Article  MathSciNet  MATH  Google Scholar 

  • Sued O, Figueroa MI, Cahn P (2016) Clinical challenges in HIV/AIDS: hints for advancing prevention and patient management strategies. Adv Drug Deliv Rev 103:5–19

    Article  Google Scholar 

  • UNAIDS (2015) How AIDS changed everything

  • Wang L, Li MY (2006) Mathematical analysis of the global dynamics of a model for HIV infection of \(CD4^{+}T\) cells. Math Biosci 200:44–57

    Article  MathSciNet  MATH  Google Scholar 

  • Wodarz D, Hamer DH (2007) Infection dynamics in HIV-specific CD4 T cells: does a CD4 T cell boost benefit the host or the virus? Math Biosci 209:14–29

    Article  MathSciNet  MATH  Google Scholar 

  • Wu H, Ding A, DeGruttola V (1999) Why are the decay rates in plasma HIV-1 different for different treatments and in different patient populations? AIDS 13(3):429–430

    Article  Google Scholar 

  • Yuzbasi S (2012) A numerical approach to solve the model for HIV infection of \(CD4^{+}T\) cells. Appl Math Model 36:5876–5890

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou Y, Liang Y, Wu J (2014) An optimal strategy for HIV multitherapy. J Comput Appl Math 263:326–337

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NSF-CBET #1510743 Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Maria Croicu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Croicu, AM., Jarrett, A.M., Cogan, N.G. et al. Short-Term Antiretroviral Treatment Recommendations Based on Sensitivity Analysis of a Mathematical Model for HIV Infection of CD4+T Cells. Bull Math Biol 79, 2649–2671 (2017). https://doi.org/10.1007/s11538-017-0345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0345-7

Keywords

Navigation