Skip to main content

Advertisement

Log in

A Mathematical Framework for Kinetochore-Driven Activation Feedback in the Mitotic Checkpoint

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Proliferating cells properly divide into their daughter cells through a process that is mediated by kinetochores, protein–complexes that assemble at the centromere of each sister chromatid. Each kinetochore has to establish a tight bipolar attachment to the spindle apparatus before sister chromatid separation is initiated. The spindle assembly checkpoint (SAC) links the biophysical attachment status of the kinetochores to mitotic progression and ensures that even a single misaligned kinetochore keeps the checkpoint active. The mechanism by which this is achieved is still elusive. Current computational models of the human SAC disregard important biochemical properties by omitting any kind of feedback loop, proper kinetochore signals, and other spatial properties such as the stability of the system and diffusion effects. To allow for more realistic in silico study of the dynamics of the SAC model, a minimal mathematical framework for SAC activation and silencing is introduced. A nonlinear ordinary differential equation model successfully reproduces bifurcation signaling switches with attachment of all 92 kinetochores and activation of APC/C by kinetochore-driven feedback. A partial differential equation model and mathematical linear stability analyses indicate the influence of diffusion and system stability. The conclusion is that quantitative models of the human SAC should account for the positive feedback on APC/C activation driven by the kinetochores which is essential for SAC silencing. Experimental diffusion coefficients for MCC subcomplexes are found to be insufficient for rapid APC/C inhibition. The presented analysis allows for systems-level understanding of mitotic control, and the minimal new model can function as a basis for developing further quantitative–integrative models of the cell division cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19(22):1937–1942

    Article  Google Scholar 

  • Chan GK, Jablonski SA, Sudakin V, Hittle JC, Yen TJ (1999) Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J Cell Biol 146(5):941–954

    Article  Google Scholar 

  • Chen J, Liu J (2014) Spatial-temporal model for silencing of the mitotic spindle assembly checkpoint. Nat Commun 5:4795

    Article  Google Scholar 

  • Cherry LM, Faulkner AJ, Grossberg LA, Balczon R (1989) Kinetochore size variation in mammalian chromosomes: an image analysis study with evolutionary implications. J Cell Sci 92(Pt 2):281–289

    Google Scholar 

  • da Silva SM, Moutinho-Santos T, Sunkel CE (2013) A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition. J Cell Biol 201(3):385–393

    Article  Google Scholar 

  • De Antoni A, Pearson CG, Cimini D, Canman JC, Sala V, Nezi L, Mapelli M, Sironi L, Faretta M, Salmon ED, Musacchio A (2005) The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 15(3):214–225

    Article  Google Scholar 

  • Denisenko TV, Sorokina IV, Gogvadze V, Zhivotovsky B (2016) Mitotic catastrophe and cancer drug resistance: a link that must to be broken. Drug Resist Updates 24:1–12

    Article  Google Scholar 

  • Doedel EJ (1981) Auto: a program for the automatic bifurcation analysis of autonomous systems. Congr Numer 30:265–284

    MathSciNet  MATH  Google Scholar 

  • Doncic A, Ben-Jacob E, Barkai N (2005) Evaluating putative mechanisms of the mitotic spindle checkpoint. Proc Natl Acad Sci USA 102(18):6332–6337

    Article  Google Scholar 

  • Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, vol 14. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Eytan E, Braunstein I, Ganoth D, Teichner A, Hittle JC, Yen TJ, Hershko A (2008) Two different mitotic checkpoint inhibitors of the anaphase-promoting complex/cyclosome antagonize the action of the activator Cdc20. Proc Natl Acad Sci USA 105(27):9181–9185

    Article  Google Scholar 

  • Fang G (2002) Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 13(3):755–766

    Article  Google Scholar 

  • Fang G, Yu H, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12(12):1871–1883

    Article  Google Scholar 

  • Görlich D, Escuela G, Gruenert G, Dittrich P, Ibrahim B (2014) Molecular codes in the human inner-kinetochore model: relating cenps to function. Biosemiotics 7(2):223–247

    Article  Google Scholar 

  • Gruenert G, Ibrahim B, Lenser T, Lohel M, Hinze T, Dittrich P (2010) Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinform 11:307

    Article  Google Scholar 

  • Gruenert G, Szymanski J, Holley J, Escuela G, Diem A, Ibrahim B, Adamatzky A, Gorecki J, Dittrich P (2013) Multi-scale modelling of computers made from excitable chemical droplets. Int J Unconv Comput 9(3–4):237–266

    Google Scholar 

  • Gruenert G, Gizynski K, Escuela G, Ibrahim B, Gorecki J, Dittrich P (2015) Understanding networks of computing chemical droplet neurons based on information flow. Int J Neural Syst 25(07):1450032

    Article  Google Scholar 

  • Han JS, Holland AJ, Fachinetti D, Kulukian A, Cetin B, Cleveland DW (2013) Catalytic assembly of the mitotic checkpoint inhibitor BubR1–Cdc20 by a Mad2-induced functional switch in Cdc20. Mol Cell 51(1):92–104

    Article  Google Scholar 

  • Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10(7):478–87

    Article  Google Scholar 

  • Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED (2000) Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 150(6):1233–1250

    Article  Google Scholar 

  • Ibrahim B (2015a) In silico spatial simulations reveal that MCC formation and excess BubR1 are required for tight inhibition of the anaphase-promoting complex. Mol Biosyst. doi:10.1039/C5MB00395D

    Google Scholar 

  • Ibrahim B (2015b) Spindle assembly checkpoint is sufficient for complete cdc20 sequestering in mitotic control. Comput Struct Biotechnol J 13:320–328

    Article  Google Scholar 

  • Ibrahim B (2015c) Systems biology modeling of five pathways for regulation and potent inhibition of the anaphase-promoting complex (APC/C): pivotal roles for MCC and BubR1. OMICS 19(5):294–305

    Article  MathSciNet  Google Scholar 

  • Ibrahim B (2015d) Toward a systems-level view of mitotic checkpoints. Prog Biophys Mol Biol 117(2–3):217–224

    Article  Google Scholar 

  • Ibrahim B, Henze R (2014) Active transport can greatly enhance Cdc20:Mad2 formation. Int J Mol Sci 15(10):19074–19091

    Article  Google Scholar 

  • Ibrahim B, Dittrich P, Diekmann S, Schmitt E (2007) Stochastic effects in a compartmental model for mitotic checkpoint regulation. J Integr Bioinform 4(3):66

    Google Scholar 

  • Ibrahim B, Diekmann S, Schmitt E, Dittrich P (2008a) In-silico modeling of the mitotic spindle assembly checkpoint. PLoS ONE 3(2):e1555

    Article  Google Scholar 

  • Ibrahim B, Dittrich P, Diekmann S, Schmitt E (2008b) Mad2 binding is not sufficient for complete Cdc20 sequestering in mitotic transition control (an in silico study). Biophys Chem 134(1–2):93–100

    Article  Google Scholar 

  • Ibrahim B, Schmitt E, Dittrich P, Diekmann S (2009) In silico study of kinetochore control, amplification, and inhibition effects in mcc assembly. Biosystems 95(1):35–50

    Article  Google Scholar 

  • Ibrahim B, Henze R, Gruenert G, Egbert MM, Huwald J, Dittrich P (2013) Rule-based modeling in space for linking heterogeneous interaction data to large-scale dynamical molecular complexes. Cells 2:506–544

    Article  Google Scholar 

  • Irniger S (2002) Cyclin destruction in mitosis: a crucial task of Cdc20. FEBS Lett 532(1–2):7–11

    Article  Google Scholar 

  • Izawa D, Pines J (2015) The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature 517(7536):631–634

    Article  Google Scholar 

  • Kabeche L, Compton DA (2012) Checkpoint-independent stabilization of kinetochore–microtubule attachments by Mad2 in human cells. Curr Biol 22(7):638–644

    Article  Google Scholar 

  • Kamenz J, Mihaljev T, Kubis A, Legewie S, Hauf S (2015) Robust ordering of anaphase events by adaptive thresholds and competing degradation pathways. Mol Cell 60(3):446–459

    Article  Google Scholar 

  • Kastl J, Braun J, Prestel A, Moller HM, Huhn T, Mayer TU (2015) Mad2 inhibitor-1 (M2I-1): a small molecule protein–protein interaction inhibitor targeting the mitotic spindle assembly checkpoint. ACS Chem Biol 10(7):1661–1666

    Article  Google Scholar 

  • Kraft C, Herzog F, Gieffers C, Mechtler K, Hagting A, Pines J, Peters JM (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J 22(24):6598–6609

    Article  Google Scholar 

  • Kreyssig P, Escuela G, Reynaert B, Veloz T, Ibrahim B, Dittrich P (2012) Cycles and the qualitative evolution of chemical systems. PLoS ONE 7(10):e45772

    Article  Google Scholar 

  • Kreyssig P, Wozar C, Peter S, Veloz T, Ibrahim B, Dittrich P (2014) Effects of small particle numbers on long-term behaviour in discrete biochemical systems. Bioinformatics 30(17):i475–481

    Article  Google Scholar 

  • Lindqvist A, van Zon W, Karlsson Rosenthal C, Wolthuis RM (2007) Cyclin B1–Cdk1 activation continues after centrosome separation to control mitotic progression. PLoS Biol 5(5):e123

    Article  Google Scholar 

  • Logan J (1997) Applied mathematics. Wiley, New York

    MATH  Google Scholar 

  • Lohel M, Ibrahim B, Diekmann S, Dittrich P (2009) The role of localization in the operation of the mitotic spindle assembly checkpoint. Cell Cycle 8(16):2650–2660

    Article  Google Scholar 

  • Lu D, Girard JR, Li W, Mizrak A, Morgan DO (2015) Quantitative framework for ordered degradation of APC/C substrates. BMC Biol 13:96

    Article  Google Scholar 

  • Luo X, Tang Z, Xia G, Wassmann K, Matsumoto T, Rizo J, Yu H (2004) The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat Struct Mol Biol 11(4):338–345

    Article  Google Scholar 

  • Mapelli M, Filipp FV, Rancati G, Massimiliano L, Nezi L, Stier G, Hagan RS, Confalonieri S, Piatti S, Sattler M, Musacchio A (2006) Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J 25(6):1273–1284

    Article  Google Scholar 

  • Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VV, Benezra R (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409(6818):355–359

    Article  Google Scholar 

  • Mistry HB, MacCallum DE, Jackson RC, Chaplain MA, Davidson FA (2008) Modeling the temporal evolution of the spindle assembly checkpoint and role of Aurora B kinase. Proc Natl Acad Sci USA 105(51):20215–20220

    Article  Google Scholar 

  • Mondal G, Baral RN, Roychoudhury S (2006) A new Mad2-interacting domain of Cdc20 is critical for the function of Mad2–Cdc20 complex in the spindle assembly checkpoint. Biochem J 396(2):243–253

    Article  Google Scholar 

  • Mondal G, Sengupta S, Panda CK, Gollin SM, Saunders WS, Roychoudhury S (2007) Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis 28(1):81–92

    Article  Google Scholar 

  • Moore JD, Kirk JA, Hunt T (2003) Unmasking the S-phase-promoting potential of cyclin B1. Science 300(5621):987–990

    Article  Google Scholar 

  • Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    Article  Google Scholar 

  • Rieder CL, Schultz A, Cole R, Sluder G (1994) Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 127(5):1301–1310

    Article  Google Scholar 

  • Rieder CL, Cole RW, Khodjakov A, Sluder G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130(4):941–948

    Article  Google Scholar 

  • Rudner AD, Murray AW (1996) The spindle assembly checkpoint. Curr Opin Cell Biol 8(6):773–780

    Article  Google Scholar 

  • Sear RP, Howard M (2006) Modeling dual pathways for the metazoan spindle assembly checkpoint. Proc Natl Acad Sci USA 103(45):16758–16763

    Article  Google Scholar 

  • Silva PM, Reis RM, Bolanos-Garcia VM, Florindo C, Tavares AA, Bousbaa H (2014) Dynein-dependent transport of spindle assembly checkpoint proteins off kinetochores toward spindle poles. FEBS Lett 588(17):3265–3273

    Article  Google Scholar 

  • Skeel RD, Berzins M (1990) A method for the spatial discretization of parabolic equations in one space variable. SIAM J Sci Stat Comput 11(1):1–32

    Article  MathSciNet  MATH  Google Scholar 

  • Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, McDonald ER, Li MZ, Hannon GJ, Sorger PK, Kirschner MW, Harper JW, Elledge SJ (2007) Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446(7138):876–881

    Article  Google Scholar 

  • Stemmann O, Zou H, Gerber SA, Gygi SP, Kirschner MW (2001) Dual inhibition of sister chromatid separation at metaphase. Cell 107(6):715–726

    Article  Google Scholar 

  • Sun Y, Kucej M, Fan HY, Yu H, Sun QY, Zou H (2009) Separase is recruited to mitotic chromosomes to dissolve sister chromatid cohesion in a DNA-dependent manner. Cell 137(1):123–132

    Article  Google Scholar 

  • Tang Z, Bharadwaj R, Li B, Yu H (2001) Mad2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 1(2):227–237

    Article  Google Scholar 

  • Tschernyschkow S, Herda S, Gruenert G, Doring V, Gorlich D, Hofmeister A, Hoischen C, Dittrich P, Diekmann S, Ibrahim B (2013) Rule-based modeling and simulations of the inner kinetochore structure. Prog Biophys Mol Biol 113(1):33–45

    Article  Google Scholar 

  • Tugendreich S, Tomkiel J, Earnshaw W, Hieter P (1995) CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81(2):261–268

    Article  Google Scholar 

  • Uzunova K, Dye BT, Schutz H, Ladurner R, Petzold G, Toyoda Y, Jarvis MA, Brown NG, Poser I, Novatchkova M, Mechtler K, Hyman AA, Stark H, Schulman BA, Peters JM (2012) APC15 mediates CDC20 autoubiquitylation by APC/C(MCC) and disassembly of the mitotic checkpoint complex. Nat Struct Mol Biol 19(11):1116–1123

    Article  Google Scholar 

  • Varetti G, Guida C, Santaguida S, Chiroli E, Musacchio A (2011) Homeostatic control of mitotic arrest. Mol Cell 44(5):710–720

    Article  Google Scholar 

  • Wang Z, Shah JV, Berns MW, Cleveland DW (2006) In vivo quantitative studies of dynamic intracellular processes using fluorescence correlation spectroscopy. Biophys J 91(1):343–351

    Article  Google Scholar 

  • Yamamoto Y, Matsuyama H, Chochi Y, Okuda M, Kawauchi S, Inoue R, Furuya T, Oga A, Naito K, Sasaki K (2007) Overexpression of BUBR1 is associated with chromosomal instability in bladder cancer. Cancer Genet Cytogenet 174(1):42–47

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission HIERATIC Grant 062098/14. The author gratefully acknowledges the visiting fund of the Institute for Numerical Simulation (INS) at Bonn University. The author would like to thank the anonymous reviewers for their helpful comments to improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashar Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, B. A Mathematical Framework for Kinetochore-Driven Activation Feedback in the Mitotic Checkpoint. Bull Math Biol 79, 1183–1200 (2017). https://doi.org/10.1007/s11538-017-0278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0278-1

Keywords

Navigation