Skip to main content
Log in

Model Microvascular Networks Can Have Many Equilibria

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We show that large microvascular networks with realistic topologies, geometries, boundary conditions, and constitutive laws can exhibit many steady-state flow configurations. This is in direct contrast to most previous studies which have assumed, implicitly or explicitly, that a given network can only possess one equilibrium state. While our techniques are general and can be applied to any network, we focus on two distinct network types that model human tissues: perturbed honeycomb networks and random networks generated from Voronoi diagrams. We demonstrate that the disparity between observed and predicted flow directions reported in previous studies might be attributable to the presence of multiple equilibria. We show that the pathway effect, in which hematocrit is steadily increased along a series of diverging junctions, has important implications for equilibrium discovery, and that our estimates of the number of equilibria supported by these networks are conservative. If a more complete description of the plasma skimming effect that captures red blood cell allocation at junctions with high feed hematocrit were to be obtained empirically, then the number of equilibria found by our approach would at worst remain the same and would in all likelihood increase significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Carr RT, Lacoin M (2000) Nonlinear dynamics of microvascular blood flow. Ann Biomed Eng 28(6):641–652

    Article  Google Scholar 

  • Carr RT, Geddes JB, Wu F (2005) Oscillations in a simple microvascular network. Ann Biomed Eng 33(6):764–771

    Article  Google Scholar 

  • Davis JM (2014) On the linear stability of blood flow through model capillary networks. Bull Math Biol 76(12):2985–3015

    Article  MathSciNet  MATH  Google Scholar 

  • Davis JM, Pozrikidis C (2010) Numerical simulation of unsteady blood flow through capillary networks. Bull Math Biol 73(8):1857–1880

    Article  MathSciNet  MATH  Google Scholar 

  • Davis JM, Pozrikidis C (2014) Self-sustained oscillations in blood flow through a honeycomb capillary network. Bull Math Biol 76(9):2217–2237

    Article  MathSciNet  MATH  Google Scholar 

  • Dellimore JW, Dunlop MJ, Canham PB (1983) Ratio of cells and plasma in blood flowing past branches in small plastic channels. Am J Physiol 244(5):H635–H643

    Google Scholar 

  • Einstein A (1906) Eine neue bestimmung der moleküldimensionen. Annalen der Physik 19:289–306

    Article  MATH  Google Scholar 

  • Fåhræus R, Lindqvist T (1931) The viscosity of blood in narrow capillary tubes. J Physiol 96:562–568

    Google Scholar 

  • Fenton BM, Carr RT, Cokelet GR (1985) Nonuniform red cell distribution in 20 to 100 \(\mu \)m bifurcations. Microvasc Res 29(1):103–126

    Article  Google Scholar 

  • Fung YC (1973) Stochastic flow in capillary blood vessels. Microvasc Res 5(1):34–48

    Article  MathSciNet  Google Scholar 

  • Ganesan P, He S, Xu H (2010a) Analysis of retinal circulation using an image-based network model of retinal vasculature. Microvasc Res 80(1):99–109

    Article  Google Scholar 

  • Ganesan P, He S, Xu H (2010b) Development of an image-based network model of retinal vasculature. Ann Biomed Eng 38:1566

    Article  Google Scholar 

  • Gardner D, Li Y, Small B, Geddes JB, Carr RT (2010) Multiple equilibrium states in a micro-vascular network. Math Biosci 227:117–124

    Article  MathSciNet  MATH  Google Scholar 

  • Geddes JB, Carr RT, Karst N, Wu F (2007) The onset of oscillations in microvascular blood flow. SIAM J Appl Dyn Syst 6(4):694–727

    Article  MathSciNet  MATH  Google Scholar 

  • Geddes JB, Carr RT, Wu F, Lao Y, Maher M (2010a) Blood flow in microvascular networks: a study in nonlinear biology. Chaos: an interdisciplinary. J Nonlinear Sci 20(4):045123

    MATH  Google Scholar 

  • Geddes JG, Storey BD, Gardner D, Carr RT (2010b) Bistability in a simple fluid network due to viscosity contrast. Phys Rev E 81:046316

    Article  Google Scholar 

  • Karst NJ, Storey BD, Geddes JB (2014) Spontaneous oscillations in simple fluid networks. SIAM J Appl Dyn Syst 13(1):157–180

    Article  MathSciNet  MATH  Google Scholar 

  • Karst NJ, Storey BD, Geddes JB (2015) Oscillations and multiple equilibria in microvascular blood flow. Bull Math Biol 77:1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Kiani MF, Pries AR, Hsu LL, Sarelius IH, Cokelet GR (1994) Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am J Physiol 266(5 Pt 2):H1822–H1828

    Google Scholar 

  • Klitzman B, Johnson PC (1982) Capillary network geometry and red cell distribution in hamster cremaster muscle. Am J Physiol 242(2):H211–H219

    Google Scholar 

  • Mooney M (1951) The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 6(2):162–170

    Article  Google Scholar 

  • Obrist D, Weber B, Buck A, Jenny P (2010) Red blood cell distribution in simplified capillary networks. Philos Trans R Soc A Math Phys Eng Sci 368(1921):2897–2918

    Article  MathSciNet  MATH  Google Scholar 

  • Pozrikidis C (2009) Numerical simulation of blood flow through microvascular capillary networks. Bull Math Biol 71(6):1520–1541

    Article  MathSciNet  MATH  Google Scholar 

  • Pries AR, Ley K, Claassen M, Gaehtgens P (1989) Red cell distribution at microvascular bifurcations. Microvasc Res 38(1):81–101

    Article  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P, Gross JF (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67(4):826–834

    Article  Google Scholar 

  • Pries AR, Fritzsche A, Ley K, Gaehtgens P (1992) Redistribution of red blood cell flow in microcirculatory networks by hemodilution. Circ Res 70:1113–1121

    Article  Google Scholar 

  • Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75(5):904–915

    Article  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32(4):654–667

    Article  Google Scholar 

  • Schmid-Schönbein GW, Skalak R, Usami S, Chien S (1980) Cell distribution in capillary networks. Microvasc Res 19(1):18–44

    Article  Google Scholar 

  • Secomb TW, Hsu R, Pries AR (1998) A model for red blood cell motion in glycocalyx-lined capillaries. Am J Physiol Heart Circ Physiol 274(3):H1016–H1022

    Google Scholar 

  • Tawfik Y, Owens RG (2013) A mathematical and numerical investigation of the hemodynamical origins of oscillations in microvascular networks. Bull Math Biol 75(4):676–707

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Brian Storey for helpful discussions throughout the early parts of this work, and an anonymous reviewer for his/her helpful comments on the initial submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel J. Karst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karst, N.J., Geddes, J.B. & Carr, R.T. Model Microvascular Networks Can Have Many Equilibria. Bull Math Biol 79, 662–681 (2017). https://doi.org/10.1007/s11538-017-0251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0251-z

Keywords

Navigation