Skip to main content

Advertisement

Log in

A Mathematical Model of T1D Acceleration and Delay by Viral Infection

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is often triggered by a viral infection, but the T1D prevalence is rising among populations that have a lower exposure to viral infection. In an animal model of T1D, the NOD mouse, viral infection at different ages may either accelerate or delay disease depending on the age of infection and the type of virus. Viral infection may affect the progression of T1D via multiple mechanisms: triggering inflammation, bystander activation of self-reactive T-cells, inducing a competitive immune response, or inducing a regulatory immune response. In this paper, we create mathematical models of the interaction of viral infection with T1D progression, incorporating each of these four mechanisms. Our goal is to understand how each viral mechanism interacts with the age of infection. The model predicts that each viral mechanism has a unique pattern of interaction with disease progression. Viral inflammation always accelerates disease, but the effect decreases with age of infection. Bystander activation has little effect at younger ages and actually decreases incidence at later ages while accelerating disease in mice that do get the disease. A competitive immune response to infection can decrease incidence at young ages and increase it at older ages, with the effect decreasing over time. Finally, an induced Treg response decreases incidence at any age of infection, but the effect decreases with age. Some of these patterns resemble those seen experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alanentalo T, Hörnblad A, Mayans S, Nilsson AK, Sharpe J, Larefalk Å, Ahlgren U, Holmberg D (2010) Quantification and three-dimensional imaging of the insulitis-induced destruction of \(\beta \)-cells in murine type 1 diabetes. Diabetes 59(7):1756–1764

    Article  Google Scholar 

  • Alexander H, Wahl L (2011) Self-tolerance and autoimmunity in a regulatory T-cell model. Bull Math Biol 73(1):33–71

    Article  MathSciNet  MATH  Google Scholar 

  • Amrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P (2000) Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 406(6797):739–742

    Article  Google Scholar 

  • Anderson M, Bluestone J (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485

    Article  Google Scholar 

  • Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, Altman JD, Ahmed R (2002) Estimating the precursor frequency of naive antigen-specific CD8 T-cells. J Exp Med 195(5):657–664

    Article  Google Scholar 

  • Borghans J, De Boer R, Sercarz E, Kumar V (1998) T-cell vaccination in experimental autoimmune encephalomyelitis: a mathematical model. J Immunol 161(3):1087–1093

    Google Scholar 

  • Cavanagh LL, Bonasio R, Mazo IB, Halin C, Cheng G, Van Der Velden AWM, Cariappa A, Chase C, Russell P, Starnbach MN et al (2005) Activation of bone marrow-resident memory t cells by circulating, antigen-bearing dendritic cells. Nat Imm 6(10):1029–1037

    Article  Google Scholar 

  • Chen Z, Herman A, Matos M, Mathis D, Benoist C (2005) Where CD4+ CD25+ Treg cells impinge on autoimmune diabetes. J Exp Med 202(10):1387–1397

    Article  Google Scholar 

  • Coppieters K, Boettler T, von Herrath M (2012) Virus infections in type 1 diabetes. Cold Spring Harb Perspect Med 2(1). doi:10.1101/cshperspect.a007682

  • D’Angeli M, Merzon E, Valbuena L, Tirschwell D, Paris C, Mueller B (2010) Environmental factors associated with childhood-onset type 1 diabetes mellitus: an exploration of the hygiene and overload hypotheses. Arch Pediatr Adolesc Med 164(8):732

    Google Scholar 

  • De Boer R, Perelson A (1995) Towards a general function describing T-cell proliferation. J Theor Biol 175(4):567–576

    Article  Google Scholar 

  • De Boer RJ, Oprea M, Antia R, Murali-Krishna K, Ahmed R, Perelson AS (2001) Recruitment times, proliferation, and apoptosis rates during the CD8+ T-cell response to lymphocytic choriomeningitis virus. J Virol 75(22):10,663–10,669

    Article  Google Scholar 

  • Feuerer M, Shen Y, Littman DR, Benoist C, Mathis D (2009) How punctual ablation of regulatory T-cells unleashes an autoimmune lesion within the pancreatic islets. Immunity 31(4):654–664

    Article  Google Scholar 

  • Filippi C, Estes E, Oldham J, von Herrath M (2009) Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J Clin Invest 119(6):1515

    Google Scholar 

  • Fu W, Wojtkiewicz G, Weissleder R, Benoist C, Mathis D (2012) Early window of diabetes determinism in NOD mice, dependent on the complement receptor CRIg, identified by noninvasive imaging. Nat Immunol 13(4):361–368

    Article  Google Scholar 

  • Fujinami R, von Herrath M, Christen U, Whitton J (2006) Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 19(1):80

    Article  Google Scholar 

  • Gillespie K, Bain S, Barnett A, Bingley P, Christie M, Gill G, Gale E (2004) The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet 364(9446):1699–1700

    Article  Google Scholar 

  • Graham K, O’Donnell J, Tan Y, Sanders N, Carrington E, Allison J, Coulson B (2007) Rotavirus infection of infant and young adult nonobese diabetic mice involves extraintestinal spread and delays diabetes onset. J Virol 81(12):6446–6458

    Article  Google Scholar 

  • Graham K, Sanders N, Tan Y, Allison J, Kay T, Coulson B (2008) Rotavirus infection accelerates type 1 diabetes in mice with established insulitis. J Virol 82(13):6139–6149

    Article  Google Scholar 

  • Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, Cagnard N, Carpentier W, Tang Q, Bluestone J et al (2010) IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T-cells. J Exp Med 207(9):1871–1878

    Article  Google Scholar 

  • Jaberi-Douraki M, Pietropaolo M, Khadra A (2014) Predictive models of type 1 diabetes progression: understanding t-cell cycles and their implications on autoantibody release. PloS one 9(4):e93,326

    Article  Google Scholar 

  • Jaberi-Douraki M, Pietropaolo M, Khadra A (2015) Continuum model of t-cell avidity: understanding autoreactive and regulatory t-cell responses in type 1 diabetes. J Theor Biol 383:93–105

    Article  MathSciNet  Google Scholar 

  • Jayasimhan A, Mansour KP, Slattery RM (2014) Advances in our understanding of the pathophysiology of type 1 diabetes: lessons from the NOD mouse. Clin Sci 126(1):1–18

    Article  Google Scholar 

  • Khadra A, Santamaria P, Edelstein-Keshet L (2009) The role of low avidity T-cells in the protection against type 1 diabetes: a modeling investigation. J Theor Biol 256(1):126–141

    Article  MathSciNet  Google Scholar 

  • Magombedze G, Nduru P, Bhunu C, Mushayabasa S (2010) Mathematical modelling of immune regulation of type 1 diabetes. Biosystems 102(2):88–98

    Article  Google Scholar 

  • Mahaffy J, Edelstein-Keshet L (2007) Modeling cyclic waves of circulating T-cells in autoimmune diabetes. SIAM J Appl Math 67(4):915–937

    Article  MathSciNet  MATH  Google Scholar 

  • Marée A, Kublik R, Finegood D, Edelstein-Keshet L (2006) Modelling the onset of type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease. Philos Trans R Soc A 364(1842):1267–1282

    Article  MathSciNet  MATH  Google Scholar 

  • Moore JR (2014) The benefits of diversity: heterogenous DC populations allow for both immunity and tolerance. J Theor Biol 357:86–102

    Article  MathSciNet  Google Scholar 

  • Nelson P, Smith N, Ciupe S, Zou W, Omenn GS, Pietropaolo M (2009) Modeling dynamic changes in type 1 diabetes progression: quantifying beta-cell variation after the appearance of islet-specific autoimmune responses. Math Biol Eng 6(4):753–778

    Article  MathSciNet  MATH  Google Scholar 

  • Nerup J, Mandrap-Poulsen T, Helqvist S, Andersen HU, Pociot F, Reimers JI, Cuartero BG, Karlsen AE, Bjerre U, Lorenzen T (1994) On the pathogenesis of IDDM. Diabetologia 37(2):S82–S89

    Article  Google Scholar 

  • Richer MJ, Straka N, Fang D, Shanina I, Horwitz MS (2008) Regulatory T-cells protect from type 1 diabetes after induction by coxsackievirus infection in the context of transforming growth factor-\(\beta \). Diabetes 57(5):1302–1311

    Article  Google Scholar 

  • Scheffold A, Murphy K, Höfer T (2007) Competition for cytokines: Treg cells take all. Nat Immunol 8(12):1285–1287

    Article  Google Scholar 

  • Serreze D, Ottendorfer E, Ellis T, Gauntt C, Atkinson M (2000) Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 49(5):708–711

    Article  Google Scholar 

  • Smith KA, Efstathiou S, Cooke A (2007) Murine gammaherpesvirus-68 infection alters self-antigen presentation and type 1 diabetes onset in nod mice. J Immunol 179(11):7325–7333

    Article  Google Scholar 

  • Steinman R, Hawiger D, Nussenzweig M (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21(1):685–711

    Article  Google Scholar 

  • Tang Q, Adams J, Penaranda C, Melli K, Piaggio E, Sgouroudis E, Piccirillo C, Salomon B, Bluestone J (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28(5):687–697

    Article  Google Scholar 

  • Tritt M, Sgouroudis E, d’Hennezel E, Albanese A, Piccirillo CA (2008) Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57(1):113–123

    Article  Google Scholar 

  • Trudeau J, Dutz J, Arany E, Hill D, Fieldus W, Finegood D (2000) Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes. Diabetes 49(1):1–7

    Article  Google Scholar 

  • Trudeau JD, Kelly-Smith C, Verchere CB, Elliott JF, Dutz JP, Finegood DT, Santamaria P, Tan R (2003) Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T-cells in peripheral blood. J Clin Invest 111(2):217–223

    Article  Google Scholar 

  • Verdaguer J, Schmidt D, Amrani A, Anderson B, Averill N, Santamaria P (1997) Spontaneous autoimmune diabetes in monoclonal T-cell nonobese diabetic mice. J Exp Med 186(10):1663–1676

    Article  Google Scholar 

  • Viskari H, Ludvigsson J, Uibo R, Salur L, Marciulionyte D, Hermann R, Soltesz G, Füchtenbusch M, Ziegler A, Kondrashova A et al (2005) Relationship between the incidence of type 1 diabetes and maternal enterovirus antibodies: time trends and geographical variation. Diabetologia 48(7):1280–1287

    Article  Google Scholar 

  • Wetzel JD, Barton ES, Chappell JD, Baer GS, Mochow-Grundy M, Rodgers SE, Shyr Y, Powers AC, Thomas JW, Dermody TS (2006) Reovirus delays diabetes onset but does not prevent insulitis in nonobese diabetic mice. J Virol 80(6):3078–3082

    Article  Google Scholar 

  • Yang J, Huck SP, McHugh RS, Hermans IF, Ronchese F (2006) Perforin-dependent elimination of dendritic cells regulates the expansion of antigen-specific CD8+ T-cells in vivo. Proc Nat Acad Sci 103(1):147–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Moore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, J.R., Adler, F. A Mathematical Model of T1D Acceleration and Delay by Viral Infection. Bull Math Biol 78, 500–530 (2016). https://doi.org/10.1007/s11538-016-0152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0152-6

Keywords

Navigation