Skip to main content
Log in

The Dynamics of HPV Infection and Cervical Cancer Cells

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The development of cervical cells from normal cells infected by human papillomavirus into invasive cancer cells can be modeled using population dynamics of the cells and free virus. The cell populations are separated into four compartments: susceptible cells, infected cells, precancerous cells and cancer cells. The model system of differential equations also has a free virus compartment in the system, which infect normal cells. We analyze the local stability of the equilibrium points of the model and investigate the parameters, which play an important role in the progression toward invasive cancer. By simulation, we investigate the boundary between initial conditions of solutions, which tend to stable equilibrium point, representing controlled infection, and those which tend to unbounded growth of the cancer cell population. Parameters affected by drug treatment are varied, and their effect on the risk of cancer progression is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulkarim B, Sabri S, Deutsch E, Chagraoui H, Maggiorella L, Thierry J, Eschwege F, Vainchenker W, Chouaïb S, Bourhis J (2002) Antiviral agent cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers. Oncogene 21:2334–2346. doi:10.1038/sj.onc.1206402

    Article  Google Scholar 

  • Ault KA (2006) Clinical study, epidemiology and natural history of human papillomavirus infections in the female genital tract. Infect Dis Obstet Gynecol 40470. doi:10.1155/IDOG/2006/40470

  • Barnabas RV, Laukkanen P, Koskela P, Kontula O, Lehtinen M, Garnett GP (2006) Epidemiology of HPV 16 and cervical cancer in Finland and the potential impact of vaccination: mathematical modelling analyses. PLOS Med 3:0624–0632. doi:10.1371/journal.pmed.0030138

    Article  Google Scholar 

  • Bonhoeffer S, May RM, Shaw GM, Nowak MA (1997) Virus dynamics and drug therapy. Proc Natl Acad Sci 94:6971–6976

    Article  Google Scholar 

  • Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV (1995) Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. J Natl Cancer Inst 87:796–802. doi:10.1093/jnci/87.11.796

    Article  Google Scholar 

  • Bosch FX, Lorincz A, Munoz N, Meijer CJLM, Shah KV (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55:244–265

    Article  Google Scholar 

  • Brown V, White KA (2010) The HPV vaccination strategy: could male vaccination have an impact? Comput Math Methods Med 11:223–237. doi:10.1080/17486700903486613

    Article  MathSciNet  MATH  Google Scholar 

  • Brown VI, White KAJ (2011) The role of optimal control in assessing the most cost-effective implementation of a vaccination programme: HPV as a case study. Math Biosci 231:126–134. doi:10.1016/j.mbs.2011.02.009

    Article  MathSciNet  MATH  Google Scholar 

  • Clifford GM, Smith JS, Aguado T, Franceschi S (2003) Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. Br J Cancer 89:101–105. doi:10.1038/sj.bjc.6601024

    Article  Google Scholar 

  • Elbasha EH, Dasbach EJ, Insinga RP (2007) Model for assessing human papillomavirus vaccination strategies. Emerg Infect Dis 13:28–41. doi:10.3201/eid1301.060438

    Article  Google Scholar 

  • Elbasha EH (2008) Global stability of equilibria in a two-sex HPV vaccination model. Bull Math Biol 70:894–909. doi:10.1007/s11538-007-9283-0

    Article  MathSciNet  MATH  Google Scholar 

  • Forde J, Nelson P (2004) Application of Sturm sequence to bifurcation analysis of delay differential equation models. J Math Anal Appl 300:273–284. doi:10.1016/j.jmaa.2004.02.063

    Article  MathSciNet  MATH  Google Scholar 

  • Globocan 2008 (2010) http://globocan.iarc.fr/, Downloaded March 2012

  • Goldhaber-Fiebert JD, Stout NK, Salomon JA, Kuntz KM, Goldie SJ (2008) Cost-effectiveness of cervical cancer screening with human papillomavirus DNA testing and HPV-16,18 vaccination. J Natl Cancer Inst 100:308–320. doi:10.1093/jnci/djn019

    Article  Google Scholar 

  • Goldie SJ, Kohli M, Grima D, Weinstein MC, Wright TC, Bosch FX, Franco E (2004) Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J Natl Cancer Inst 96:604–615. doi:10.1093/jnci/djh104

    Article  Google Scholar 

  • Hostetler KY, Rought S, Aldern KA, Trahan J, Beadle JR, Corbeil J (2006) Enhanced antiproliferative effects of alkoxyalkyl esters of cidofovir in human cervical cancer cells in vitro. Mol Cancer Ther 5:156–159. doi:10.1158/1535-7163.MCT-05-0200

    Article  Google Scholar 

  • IARC (2005) IARC handbooks of cancer prevention, cervix cancer screening. IARC Press, Lyon

  • IARC (2007) IARC monographs on the evaluation of carcinogenic risk to humans, volume 90, human papillomavirus. IARC Press, Lyon

  • Kim JJ, Brisson M, Edmunds WJ, Goldie SJ (2008) Modeling cervical cancer prevention in developed countries. Vaccine 26:K76–K86. doi:10.1016/j.vaccine.2008.06.009

    Article  Google Scholar 

  • Kohli M, Ferko N, Martin A, Franco EL, Jenkins D, Gallivan S, Sherlaw-Johnson C, Drummond M (2007) Estimating the long-term impact of a prophylactic human papillomavirus 16/18 vaccine on the burden of cervical cancer in the UK. Br J Cancer 96:143–150. doi:10.1038/sj.bjc.6603501

    Article  Google Scholar 

  • Kulasingam SL, Myers ER (2003) Potential health and economic impact of adding a human papillomavirus vaccine to screening programs. JAMA 290:781–789. doi:10.1001/jama.290.6.781

    Article  Google Scholar 

  • Lee C, Laimins LA (2007) The differentiation-dependent life cycle of human papillomaviruses in keratinocytes. In: Garcea R, Di Maio D (eds) The papillomaviruses. Springer, New York, pp 45–67

    Chapter  Google Scholar 

  • Lee SL, Tameru AM (2012) A mathematical model of human papillomavirus (HPV) in the United States and its impact on cervical cancer. J Cancer 3:262–268. doi:10.7150/jca.4161

    Article  Google Scholar 

  • Lowy DR, Kirnbauer R, Schiller JT (1994) Genital human papillomavirus infection. Proc Natl Acad Sci USA 91:2436–2440

    Article  Google Scholar 

  • Motoyama S, Ladines-Llave CA, Villanueva SL, Maruo T (2004) The role of human papilloma virus in the molecular biology of cervical carcinoma. Kobe J Med Sci 50:9–19

    Google Scholar 

  • Mougin C, Dalstein V, Pretet JL, Gay C, Schall JP, Riethmuller D (2001) Epidemiology of cervical papillomavirus infections, recent knowledge. Presse Med 30:1017–1023

    Google Scholar 

  • Nowak M, Bangham CRM (1996) Population dynamics of immune responses to persistent viruses. Science 272:74–79

    Article  Google Scholar 

  • Nowak M, May R (2000) Virus dynamics, mathematical principles of immunology and virology. Oxford University Press, New York

    MATH  Google Scholar 

  • Sanders GD, Taira AV (2003) Cost effectiveness of potential vaccine for human papillomavirus. Emerg Infect Dis 9:37–48. doi:10.3201/eid0901.020168

    Article  Google Scholar 

  • Schorge JO, Schaffer JI, Halvorson LM, Hoffman BL, Bradshaw KD, Chunningham FG (2008) Cervical cancer. In: Williams gynecology. McGraw-Hill, NY

  • Taira AV, Neukersmans CP, Sanders GD (2004) Evaluating human papillomavirus vaccination programs. Emerg Infect Dis 10:915–1923. doi:10.3201/eid1011.040222

    Article  Google Scholar 

  • Trottier H, Franco EL (2006) The epidemiology of genital human papillomavirus infection. Vaccine 24:S1/4–S1/15. doi:10.1016/j.vaccine.2005.09.054

    Article  Google Scholar 

  • Woodman CBJ, Collins SI, Young LS (2007) The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7:11–22. doi:10.1038/nrc2050

    Article  Google Scholar 

  • Wright TC, Ferenczy A (2002) Anatomy and histology of the cervix. Blaustein’s pathology of the female genital tract, 5th edn. Springer, New York, pp 207–224

    Google Scholar 

Download references

Acknowledgments

Thanks to Tim Sparer, Louis J. Gross, Vitaly Ganusov, Jiang Jiang and Kelsey Bratton for useful discussion and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Forde.

Additional information

Noor Asih’s work was part of her Ph.D. program supported by Ministry of Education and Culture, The Republic of Indonesia. The work of all the authors was partially supported by the National Institute of Mathematical and Biological Synthesis (NIMBioS), an Institute sponsored by National Science Foundation, the US Department of Homeland Security, and the US Department of Agriculture through NSF Awards #EF-0832858 and #DBI-1300426, with additional support from University of Tennessee, Knoxville. Lenhart’s work is also partially supported by the University of Tennessee Center for Business and Economic Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asih, T.S.N., Lenhart, S., Wise, S. et al. The Dynamics of HPV Infection and Cervical Cancer Cells. Bull Math Biol 78, 4–20 (2016). https://doi.org/10.1007/s11538-015-0124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0124-2

Keywords

Navigation