Skip to main content
Log in

The Scaling and Shift of Morphogen Gene Expression Boundary in a Nonlinear Reaction Diffusion System

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The scaling and shift of the gene expression boundary in a developing embryo are two key problems with regard to morphogen gradient formation in developmental biology. In this study, a bigradient model was applied to a nonlinear reaction diffusion system (NRDS) to investigate the location of morphogen gene expression boundary. In contrast to the traditional synthesis–diffusion–degradation model, the introduction of NRDS in this study contributes to the precise gene expression boundary at arbitrary location along the anterior-posterior axis other than simply midembryo even when the linear characteristic lengths of two morphogens are equal. The scaling location depends on the ratio of two morphogen influxes (\(w\)) and concentrations (\(r\)) as well as the nonlinear reaction diffusion parameters (\(\alpha , n\)). We also formulate a direct relationship between the shift in the gene expression boundary and the influx of morphogen and find that enhancing the morphogen influx is helpful to build up a robust gene expression boundary. By analyzing the robustness of the morphogen gene expression boundary and comparing with the relevant results in linear reaction diffusion system, we determine the precise range of the ratio of the two morphogen influxes with a lower shift in the morphogen gene expression boundary and increased system robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ben-Zvi D, Shilo BZ, Barkai N (2011) Scaling of morphogen gradients. Curr Opin Genet Dev 21(6):704–710

    Article  Google Scholar 

  • Berezhkovskii AM, Sample C, Shvartsman SY (2010) How long does it take to establish a morphogen gradient? Biophys J 99(8):L59–L61

    Article  Google Scholar 

  • Berezhkovskii AM, Sample C, Shvartsman SY (2011) Formation of morphogen gradients: local accumulation time. Phys Rev E 83(051):906

    Google Scholar 

  • Bollenbach T, Kruse K, Pantazis P, González-Gaitán M, Jülicher F (2005) Robust formation of morphogen gradients. Phys Rev Lett 94(018):103

    Google Scholar 

  • Bollenbach T, Kruse K, Pantazis P, González-Gaitán M, Jülicher F (2007) Morphogen transport in epithelia. Phys Rev E 75(011):901

    Google Scholar 

  • Boon J, Lutsko J, Lutsko C (2012a) Nonlinear reaction–diffusion: a microscopic approach. Cent Eur J Phys 10(3):631–636

    Google Scholar 

  • Boon JP, Lutsko JF, Lutsko C (2012b) Microscopic approach to nonlinear reaction–diffusion: the case of morphogen gradient formation. Phys Rev E 85(021):126

    Google Scholar 

  • Cheung D, Miles C, Kreitman M, Ma J (2011) Scaling of the Bicoid morphogen gradient by a volume-dependent production rate. Development 138(13):2741–2749

    Article  Google Scholar 

  • Chisholm RH, Hughes BD, Landman KA (2010) Building a morphogen gradient without diffusion in a growing tissue. PLoS One 5(9):e12857

    Article  Google Scholar 

  • Crick F (1970) Diffusion in embryogenesis. Nature 225(5231):420–422

    Article  Google Scholar 

  • Driever W, Nsslein-Volhard C (1988) The Bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54(1):95–104

    Article  Google Scholar 

  • Gordon PV, Sample C, Berezhkovskii AM, Muratov CB, Shvartsman SY (2011) Local kinetics of morphogen gradients. Proc Natl Acad Sci 108(15):6157–6162

    Article  Google Scholar 

  • Houchmandzadeh B, Wieschaus E, Leibler S (2005) Precise domain specification in the developing Drosophila embryo. Phys Rev E 72(061):920

  • Howard M, Wolde PRt (2005) Finding the center reliably: robust patterns of developmental gene expression. Phys Rev Lett 95(208):103

    Google Scholar 

  • Lott SE, Kreitman M, Palsson A, Alekseeva E, Ludwig MZ (2007) Canalization of segmentation and its evolution in Drosophila. Proc Natl Acad Sci 104(26):10926–10931

    Article  Google Scholar 

  • Mchale P, Rappel WJ, Levine H (2006) Embryonic pattern scaling achieved by oppositely directed morphogen gradients. Phys Biol 3(2):107–120

    Article  Google Scholar 

  • Saunders TE, Howard M (2009) Morphogen profiles can be optimized to buffer against noise. Phys Rev E 80(041):902

    Google Scholar 

  • Surkova S, Kosman D, Kozlov K, Samsonova AA, Spirov A, Vanario-Alonso CE, Samsonova M, Reinitz J (2008) Characterization of the Drosophila segment determination morphome. Dev Biol 313(2):844–862

  • Wartlick O, Mumcu P, Kicheva A, Bittig T, Seum C, Jlicher F, Gonzlez-Gaitn M (2011) Dynamics of Dpp signaling and proliferation control. Science 331(6021):1154–1159

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25(1):1–47

    Article  Google Scholar 

  • Yuste SB, Abad E, Lindenberg K (2010) Reaction-subdiffusion model of morphogen gradient formation. Phys Rev E 82(061):123

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11274394), the Natural Science Foundation of Guangdong Province (Grant No. S2012010010542), the Fundamental Research Funds for the Central Universities (Grant No. 11lgjc12), and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110171110023)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Zhi Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WS., Shao, YZ. The Scaling and Shift of Morphogen Gene Expression Boundary in a Nonlinear Reaction Diffusion System. Bull Math Biol 76, 1416–1428 (2014). https://doi.org/10.1007/s11538-014-9967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9967-1

Keywords

Navigation