Skip to main content

Advertisement

Log in

The Dynamics of Growing Islets and Transmission of Schistosomiasis Japonica in the Yangtze River

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We formulate and analyze a system of ordinary differential equations for the transmission of schistosomiasis japonica on the islets in the Yangtze River, China. The impact of growing islets on the spread of schistosomiasis is investigated by the bifurcation analysis. Using the projection technique developed by Hassard, Kazarinoff and Wan, the normal form of the cusp bifurcation of codimension 2 is derived to overcome the technical difficulties in studying the existence, stability, and bifurcation of the multiple endemic equilibria in high-dimensional phase space. We show that the model can also undergo transcritical bifurcations, saddle-node bifurcations, a pitchfork bifurcation, and Hopf bifurcations. The bifurcation diagrams and epidemiological interpretations are given. We conclude that when the islet reaches a critical size, the transmission cycle of the schistosomiasis japonica between wild rats Rattus norvegicus and snails Oncomelania hupensis could be established, which serves as a possible source of schistosomiasis transmission along the Yangtze River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, New York

    Google Scholar 

  • Carr L (1981) Applications of centre manifold theory. Springer, New York-Berlin

    Book  MATH  Google Scholar 

  • Castillo-Chavez C, Feng Z, Xu D (2008) A schistosomiasis model with mating structure and time delay. Math Biosci 211:333–341

    Article  MathSciNet  MATH  Google Scholar 

  • Chow S-N, Li C, Wang D (1994) Normal forms and bifurcation of planar vector fields. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Feng Z, Li C-C, Milner FA (2002) Schistosomiasis models with density dependence and age of infection in snail dynamics. Math Biosci 177/178:271–286

    Article  MathSciNet  MATH  Google Scholar 

  • Feng Z, Li C-C, Milner FA (2005) Schistosomiasis models with two migrating human groups. Math Comput Model 41:1213–1230

    Article  MathSciNet  MATH  Google Scholar 

  • Hassard BD, Kazarinoff ND, Wan Y-H (1981) Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge-New York

    MATH  Google Scholar 

  • Gryseels B, Polman Katja, Jan Clerinx, Kestens Luc (2006) Human schistosomiasis. Lancet 368:1106–1118

    Article  Google Scholar 

  • Guo Y (1991) Snail biology, schistosome biology, prevention and cure of schistosomiasis. People Health Press, Beijing

    Google Scholar 

  • Liang S, Maszle D, Spear RC (2002) A quantitative framework for a multi-group model of Schistosomiasis japonicum transmission dynamics and control in Sichuan, China. Acta Trop 82:263–277

    Article  Google Scholar 

  • Liang S et al (2007) Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. PNAS 104:7110–7115

    Article  Google Scholar 

  • Kuznetsov Yuri A (1998) Elements of applied bifurcation theory. Springer, New York

    MATH  Google Scholar 

  • MacDonald G (1965) The dynamics of helminth infections with spatial reference to schistosomes. Trans R Soc Trop Med Hyg 59:489–506

    Article  Google Scholar 

  • Nåsell I, Hirsch WM (1973) The transmission dynamics of schistosomiasis. Commun Pure Appl Math 26:395–453

    Article  MathSciNet  MATH  Google Scholar 

  • Poggensee G, Feldmeier H (2001) Female genital schistosomiasis: facts and hypotheses. Acta Trop 79:193–210

    Article  Google Scholar 

  • Poggensee G, Feldmeier H, Krantz I (1999) Schistosomiasis of the female genital tract: public health aspects. Parasitol Today 15:378–381

    Article  Google Scholar 

  • Spear RC, Hubbard A, Liang S, Seto E (2002) Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ Health Perspect 110:907–915

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Wu J, Liu N, Zuo S (1987) The qualitative analysis of model of the transmission dynamics of Japanese schistosomiasis. Appl Math A 2:352–362

    MATH  Google Scholar 

  • Wu J, Feng Z (2002) Mathematical models for schistosomiasis with delays and multiple definitive host, mathematical approaches for emerging and reemerging infectious disease: models, methods, and theory (Minneapolis, MN, 1999), 215–229, IMA Vol. Math Appl, 126, Springer, New York

  • Xu G, Tian J, Chen G, Yang H, Qiu L, Hu H, Xie C, Zhou W, Yin W, Zhao Y, Cai G, Pang H, Wu W (1999) Observation of natural focal disease of schistosomiasis in Rattus norvegicus in Nanjing. J Pract Parasitol 7:4–6 (in Chinese)

    Google Scholar 

  • Zhang P, Feng Z, Milner FA (2007) A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies. Math Biosci 205:83–107

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao G, Zhao Q, Jiang Q, Chen X, Wang L, Yuan H (2005) Surveillance for Schistosomiasis japonica in China from 2000 to 2003. Acta Trop 96:288–295

    Article  Google Scholar 

  • Zhao R, Milner FA (2008) A mathematical model of Schistosoma mansoni in Biomphalaria glabrata with control strategies. Bull Math Biol 70:1886–1905

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou X (2005) Science on oncomelania snail. Science Press, Beijing

    Google Scholar 

  • Zhou X, Lin D, Yang H, Chen H, Sun L, Yang G, Hong Q, Brown L, Malone J (2002) Use of Landsat TM satellite surveillance data to measure the impact of the 1998 flood on snail intermediate host dispersal in the lower Yangtze River basin. Acta Trop 82:199–205

    Article  Google Scholar 

  • Zhou X, Wang L, Chen M, Wu X, Jiang Q, Chen X, Zheng J, Jury U (2005) The public health significance and control of schistosomiasis in China-then and now. Acta Trop 96:96–105

    Google Scholar 

Download references

Acknowledgments

This research was supported by NSERC and ERA, an Early Researcher Award of Ministry of Research and Innovation of Ontario, Canada and NSFC-11171267 of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiping Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, C., Zhou, X. & Zhu, H. The Dynamics of Growing Islets and Transmission of Schistosomiasis Japonica in the Yangtze River. Bull Math Biol 76, 1194–1217 (2014). https://doi.org/10.1007/s11538-014-9961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9961-7

Keywords

Navigation