Skip to main content

Advertisement

Log in

A Stuctured Discrete Model for Dengue Fever Infections and the Determination of \(R_0\) from Age-Stratified Serological Data

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A time discrete age-structured model for modeling the spread of Dengue fever is built. The demographic dynamics is introduced trough the Leslie model. The basic reproductive number is introduced, and an approximation for it is built. The final age distributions for the susceptibles, infected and removed are obtained, and we show how they can be used to produce an actual estimate for \(R_0\) from stratified serological data. An application is made using data from Recife, Brazil, and explicit estimates for \(R_0\) are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Braga, C., Luna, C. F., Martelli, C. M. T., Souza, W. V., Cordeiro, M. T., et al. (2010). Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil. Acta Tropica, 113, 234–240.

  • Brauer, F., & Castillo-Chavez, C. (2012). Mathematical models in population biology and epidemiology, Texts in applied mathematics (2nd ed., Vol. 40). New York: Springer.

  • Caswell, H. (2001). Matrix population models: Construction, analysis, and interpretation (2nd ed.). USA: Sinauer Associates.

    Google Scholar 

  • Derouich, M., & Boutayeb, A. (2006). Dengue fever: Mathematical modelling and computer simulation. Applied Mathematics and Computation, 177, 528–544.

    Article  MATH  MathSciNet  Google Scholar 

  • Diekmann, O., et al. (1990). On the definition and the computation of the basic reproduction ratio \(R0\) in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28, 365–382.

    Article  MATH  MathSciNet  Google Scholar 

  • Esteva, L., & Vargas, C. (1998). Analysis of a dengue disease transmission model. Mathematical Biosciences, 150, 131–151.

    Article  MATH  Google Scholar 

  • Esteva, L., & Vargas, C. (2003). Coexistence of different serotypes of dengue virus. Journal of Mathematical Biology, 46, 31–47.

  • Farrington, C. P., Kannan, M. N., & Gay, N. J. (2001), Estimation of the basic reproduction number for infectious diseases from age-stratified serological survey data. Journal of Applied Statistics, 50(3), 251–292.

  • Feng, Z., & Velasco-Hernandez, J. X. (1997). Competitive exclusion in a vector-host model for the dengue fever. Journal of Mathematical Biology, 35, 523–544.

    Article  MATH  MathSciNet  Google Scholar 

  • Ferguson, N., Donnelly, C. A., & Anderson, R. M. (1999). Transmission dynamics and epidemiology of dengue: Insights from age-stratified seroprevalence surveys. Philosophical Transactions of the Royal Society of London, Series B, 354, 757–768.

  • Garba, S. M., & Gumel, A. B. (2008). Backward bifurcations in dengue transmission dynamics. Mathematical Biosciences, 215, 11–25.

    Article  MATH  MathSciNet  Google Scholar 

  • Gubler, D. J. (2002). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends in Microbiology, 10, 100–103.

  • Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Rev, 42(4), 599–653.

    Article  MATH  MathSciNet  Google Scholar 

  • Kyle, J. L., & Harris, E. (2008). Global spread and persistence of dengue. Annual Review of Microbiology, 62, 71–92.

    Article  Google Scholar 

  • Luz, P. M., Codeço, C. T., Massad, E., & Struchiner, C. J. (2003). Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil. Memórias do Instituto Oswaldo Cruz, 98(7), 871–878.

    Article  Google Scholar 

  • Nishiura, H. (2006). Mathematical and statistical analyses of the spread of dengue. Dengue Bulletin, 30, 51–67.

    Google Scholar 

  • Regis, L., Monteiro, A. M., Melo-Santos, M. A. V., Silveira, J. C., Furtado, A. F., et al. (2008). Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: Basis for surveillance, alert and control system. Memórias do Instituto Oswaldo Cruz, 103(1), 50–59.

    Article  Google Scholar 

  • Rico-Hesse, R. (2010). Dengue virus virulence and transmission determinants. Current Topics in Microbiology and Immunology, 338, 45–55.

    Google Scholar 

  • Torres, J. R., & Castro, J. (2007). The health and economic impact of dengue in Latin America. Cadernos de Saúde Pública, 23(Suppl 1), S23–S31.

    Google Scholar 

  • World Health Organization. (2009). Dengue: Guidelines for diagnosis, treatment, prevention and control. New edition.

  • Yang, H. M., & Ferreira, C. P. (2008). Assessing the effects of vector control on dengue transmission. Applied Mathematics and Computation, 198, 401–413.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Cyntia Braga and Wayner Souza for making available the serological data used in this work. C. Castilho thanks all the members of the Saudavel Dengue Project for many discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Castilho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mello, R.F.L., Castilho, C. A Stuctured Discrete Model for Dengue Fever Infections and the Determination of \(R_0\) from Age-Stratified Serological Data. Bull Math Biol 76, 1288–1305 (2014). https://doi.org/10.1007/s11538-014-9956-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9956-4

Keywords

Navigation