Skip to main content
Log in

Analytical Solutions of Actin-Retrograde-Flow in a Circular Stationary Cell: A Mechanical Point of View

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The network of actin filaments in the lamellipodium (LP) of stationary and migrating cells flows in a retrograde direction, from the membrane periphery toward the cell nucleus. We have theoretically studied this phenomenon in the circular stationary (fully spread) cells. Adopting a continuum view on the LP actin network, new closed-form solutions are provided for the actin-retrograde-flow (ARF) in a polar coordinate system. Due to discrepancy in the mechanical models of the actin network in the ARF regime, solutions are provided for both assumptions of solid and fluid behavior. Other involved phenomena, including polymerizing machine at the membrane periphery, cytosol drag, adhesion friction, and membrane tension, are also discussed to provide an overall quantitative view on this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham, V. C., Krishnamurthi, V., Taylor, D. L., & Lanni, F. (1999). The actin-based nanomachine at the leading edge of migrating cells. Biophys. J., 77, 1721–1732.

    Article  Google Scholar 

  • Alexandrova, A. Y., Arnold, K., Schaub, S., Vasiliev, J. M., Meister, J.-J., Bershadsky, A. D., et al. (2008). Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PLoS ONE, 3, e3234.

    Article  Google Scholar 

  • Babich, A., Li, S., O’Connor, R. S., Milone, M. C., Freedman, B. D., & Burkhardt, J. K. (2012). F-actin polymerization and retrograde flow drive sustained PLCγ1 signaling during T cell activation. J. Cell Biol., 197, 775–787.

    Article  Google Scholar 

  • Barocas, V. H., & Tranquillo, R. T. (1997). An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng., 119, 137–145.

    Article  Google Scholar 

  • Betz, T., Koch, D., Lu, Y.-B., Franze, K., & Käs, J. A. (2011). Growth cones as soft and weak force generators. Proc. Natl. Acad. Sci. USA, 108, 13420–13425.

    Article  Google Scholar 

  • Campàs, O., Mahadevan, L., & Joanny, J.-F. (2012). Actin network growth under load. Biophys. J., 102, 1049–1058.

    Article  Google Scholar 

  • Craig, E. M., Van Goor, D., Forscher, P., & Mogilner, A. (2012). Membrane tension, myosin force, and actin turnover maintain actin treadmill in the nerve growth cone. Biophys. J., 102, 1503–1513.

    Article  Google Scholar 

  • Gardel, M. L., Sabass, B., Ji, L., Danuser, G., Schwarz, U. S., & Waterman, C. M. (2008). Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol., 183, 999–1005.

    Article  Google Scholar 

  • Gardel, M. L., Schneider, I. C., Aratyn-Schaus, Y., & Waterman, C. M. (2010). Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol., 26, 315–333.

    Article  Google Scholar 

  • George, U. Z., Stéphanou, A., & Madzvamuse, A. (2013). Mathematical modelling and numerical simulations of actin dynamics in the eukaryotic cell. J. Math. Biol., 66, 547–593.

    Article  MathSciNet  MATH  Google Scholar 

  • Gholami, A., Wilhelm, J., & Frey, E. (2006). Entropic forces generated by grafted semiflexible polymers. Phys. Rev. E, 74, 1–21.

    Article  Google Scholar 

  • Gholami, A., Enculescu, M., & Falcke, M. (2012). Membrane waves driven by forces from actin filaments. New J. Phys., 14, 115002.

    Article  Google Scholar 

  • Henson, J. H., Cheung, D., Fried, C. A., Shuster, C. B., McClellan, M. K., Voss, M. K., et al. (2009). Structure and dynamics of an Arp2/3 complex-independent component of the lamellipodial actin network. Cell Motil. Cytoskelet., 66, 679–692.

    Article  Google Scholar 

  • Hotulainen, P., & Lappalainen, P. (2006). Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol., 173, 383–394.

    Article  Google Scholar 

  • Ji, L., Lim, J., & Danuser, G. (2008). Fluctuations of intracellular forces during cell protrusion. Nat. Cell Biol., 10, 1393–1400.

    Article  Google Scholar 

  • Keren, K. (2011). Cell motility: the integrating role of the plasma membrane. Eur. Biophys. J., 40, 1013–1027.

    Article  Google Scholar 

  • Keren, K., Yam, P. T., Kinkhabwala, A., Mogilner, A., & Theriot, J. A. (2009). Intracellular fluid flow in rapidly moving cells. Nat. Cell Biol., 11, 1219–1224.

    Article  Google Scholar 

  • Keren, K., Yam, P. T., Kinkhabwala, A., Mogilner, A., & Theriot, J. A. (2009). Intracellular fluid flow in rapidly moving cells. Nat. Cell Biol., 11, 1219–1224.

    Article  Google Scholar 

  • Kruse, K., Joanny, J. F., Jülicher, F., & Prost, J. (2006). Contractility and retrograde flow in lamellipodium motion. Phys. Biol., 3, 130–137.

    Article  Google Scholar 

  • Kuusela, E., & Alt, W. (2009). Continuum model of cell adhesion and migration. J. Math. Biol., 58, 135–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Lai, M., Krempl, E., & Ruben, D. (2010). Introduction to continuum mechanics (4th ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Lauffenburger, D. A., & Horwitz, A. F. (1996). Cell migration: a physically integrated molecular process. Cell, 84, 359–369.

    Article  Google Scholar 

  • Mogilner, A., & Keren, K. (2009). The shape of motile cells. Curr. Biol., 19, R762–R771.

    Article  Google Scholar 

  • Mogilner, A., & Oster, G. (1996). Cell motility driven by actin polymerization. Biophys. J., 71, 3030–3045.

    Article  Google Scholar 

  • Mogilner, A., & Oster, G. (2003). Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J., 84, 1591–1605.

    Article  Google Scholar 

  • Pollard, T. D., & Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112, 453–465.

    Article  Google Scholar 

  • Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M., & Danuser, G. (2004). Two distinct actin networks drive the protrusion of migrating cells. Science, 305, 1782–1786.

    Article  Google Scholar 

  • Pujol, T., du Roure, O., Fermigier, M., & Heuvingh, J. (2012). Impact of branching on the elasticity of actin networks. Proc. Natl. Acad. Sci. USA, 109, 10364–10369.

    Article  Google Scholar 

  • Rice, R., & Barocas, V. (2003). A discrete-cell model of tissue-equivalent compaction. In W. Alt, M. Chaplain, M. Griebel, & J. Lenz (Eds.), Polymer and cell dynamics—multiscale modeling and numerical simulations (pp. 243–250). Basel: Birkhäuser.

    Google Scholar 

  • Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., et al. (2003). Cell migration: integrating signals from front to back. Science, 302, 1704–1709.

    Article  Google Scholar 

  • Rotsch, C., Jacobson, K., & Radmacher, M. (1999). Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA, 96, 921–926.

    Article  Google Scholar 

  • Rubinstein, B., Jacobson, K., & Mogilner, A. (2005). Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model. Simul., 3, 413–439.

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinstein, B., Fournier, M. F., Jacobson, K., Verkhovsky, A. B., & Mogilner, A. (2009). Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys. J., 97, 1853–1863.

    Article  Google Scholar 

  • Sabass, B., & Schwarz, U. S. (2010). Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation. J. Phys. Condens. Matter, 22, 194112.

    Article  Google Scholar 

  • Shao, D., Levine, H., & Rappel, W.-J. (2012). Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc. Natl. Acad. Sci. USA, 109, 6851–6856.

    Article  Google Scholar 

  • Shemesh, T., Verkhovsky, A. B., Svitkina, T. M., Bershadsky, A. D., & Kozlov, M. M. (2009). Role of focal adhesions and mechanical stresses in the formation and progression of the lamellum interface. Biophys. J., 97, 1254–1264.

    Article  Google Scholar 

  • Shemesh, T., Bershadsky, A. D., & Kozlov, M. M. (2012). Physical model for self-organization of actin cytoskeleton and adhesion complexes at the cell front. Biophys. J., 102, 1746–1756.

    Article  Google Scholar 

  • Taber, L. A., Shi, Y., Yang, L., & Bayly, P. V. (2011). A poroelastic model for cell crawling including mechanical coupling between cytoskeleton and actin polymerization. J. Mech. Mater. Struct., 6, 569–589.

    Article  Google Scholar 

  • Zimmermann, J., Brunner, C., Enculescu, M., Goegler, M., Ehrlicher, A., Käs, J., et al. (2012). Actin filament elasticity and retrograde flow shape the force–velocity relation of motile cells. Biophys. J., 102, 287–295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Firoozabadi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary materials (PDF 359 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemi V., A., Firoozabadi, B. & Saidi, M.S. Analytical Solutions of Actin-Retrograde-Flow in a Circular Stationary Cell: A Mechanical Point of View. Bull Math Biol 76, 744–760 (2014). https://doi.org/10.1007/s11538-014-9941-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9941-y

Keywords

Navigation