Skip to main content
Log in

Multistationarity in Sequential Distributed Multisite Phosphorylation Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Multisite phosphorylation networks are encountered in many intracellular processes like signal transduction, cell-cycle control, or nuclear signal integration. In this contribution, networks describing the phosphorylation and dephosphorylation of a protein at n sites in a sequential distributive mechanism are considered. Multistationarity (i.e., the existence of at least two positive steady state solutions of the associated polynomial dynamical system) has been analyzed and established in several contributions. It is, for example, known that there exist values for the rate constants where multistationarity occurs. However, nothing else is known about these rate constants.

Here, we present a sign condition that is necessary and sufficient for multistationarity in n-site sequential, distributive phosphorylation. We express this sign condition in terms of linear systems, and show that solutions of these systems define rate constants where multistationarity is possible. We then present, for n≥2, a collection of feasible linear systems, and hence give a new and independent proof that multistationarity is possible for n≥2. Moreover, our results allow to explicitly obtain values for the rate constants where multistationarity is possible. Hence, we believe that, for the first time, a systematic exploration of the region in parameter space where multistationarity occurs has become possible. One consequence of our work is that, for any pair of steady states, the ratio of the steady state concentrations of kinase-substrate complexes equals that of phosphatase-substrate complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barik, D., Baumann, W. T., Paul, M. R., Novak, B., & Tyson, J. J. (2010). A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol. Syst. Biol., 6, 1–18.

    Article  Google Scholar 

  • Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., & Tyson, J. J. (2004). Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell, 15(8), 3841–3862.

    Article  Google Scholar 

  • Conradi, C., & Flockerzi, D. (2012). Multistationarity in mass action networks with applications to ERK activation. J. Math. Biol., 65(1), 107–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2005). Using chemical reaction network theory to discard a kinetic mechanism hypothesis. IET Syst. Biol., 152(4), 243–248.

    Article  Google Scholar 

  • Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2006). Chemical reaction network theory—a tool for systems biology. In Proceedings of the 5th MATHMOD.

    Google Scholar 

  • Conradi, C., Flockerzi, D., & Raisch, J. (2008). Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosci., 211, 05-131.

    Article  MathSciNet  MATH  Google Scholar 

  • Cooling, M. T., Hunter, P., & Crampin, E. J. (2009). Sensitivity of NFAT cycling to cytosolic calcium concentration: implications for hypertrophic signals in cardiac myocytes. Biophys. J., 96, 2095–2104.

    Article  Google Scholar 

  • Crabtree, G. R., & Olson, E. N. (2002). NFAT signaling: choreographing the social lives of cells. Cell, 109, S67–S79.

    Article  Google Scholar 

  • Feinberg, M. (1995a). The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal., 132, 311–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Feinberg, M. (1995b). Multiple steady states for chemical reaction networks of deficiency one. Arch. Ration. Mech. Anal., 132, 371–406.

    Article  MathSciNet  MATH  Google Scholar 

  • Feliu, E., & Wiuf, C. (2012). Enzyme-sharing as a cause of multi-stationarity in signalling systems. J. R. Soc. Interface, 9(71), 1224–1232.

    Article  Google Scholar 

  • Gunawardena, J. (2005). Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc. Natl. Acad. Sci. USA, 102(41), 14617–14622.

    Article  Google Scholar 

  • Gunawardena, J. (2007). Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants. Biophys. J., 93(11), 3828–3834.

    Article  Google Scholar 

  • Hermann-Kleiter, N., & Baier, G. (2010). NFAT pulls the strings during CD4+ T helper cell effector functions. Blood, 115(15), 2989–2997.

    Article  Google Scholar 

  • Holstein, K., Flockerzi, D., & Conradi, C. (2013). Parameter regimes for bistability in multisite phosphorylation networks. In preparation.

  • Huang, C.-Y. F., & Ferrell, J. E. (1996). Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA, 93(19), 10078–10083.

    Article  Google Scholar 

  • Klamt, S., & Gagneur, J. (2004). Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioninform., 175(5).

  • Macian, F. (2005). NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol., 5(6), 472–484.

    Article  Google Scholar 

  • Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3), 353–359.

    Article  Google Scholar 

  • Pérez Millán, M., Dickenstein, A., Shiu, A., & Conradi, C. (2012). Chemical reaction systems with toric steady states. Bull. Math. Biol., 74, 1027–1065.

    Article  MathSciNet  MATH  Google Scholar 

  • Salazar, C., & Höfer, T. (2007). Versatile regulation of multisite protein phosphorylation by order of phosphate processing and protein-protein interactions. FEBS J., 274, 1046–1061.

    Article  Google Scholar 

  • Salazar, C., & Höfer, T. (2009). Multisite protein phosphorylation—from molecular mechanisms to kinetic models. FEBS J., 276(12), 3177–3198.

    Article  Google Scholar 

  • Seger, R., & Krebs, E. G. (1995). The MAPK signaling cascade. FASEB J., 9, 726–735.

    Google Scholar 

  • Shaul, Y. D., & Seger, R. (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta, Mol. Cell Res., 1773(8), 1213–1226.

    Article  Google Scholar 

  • Thomson, M., & Gunawardena, J. (2009a). The rational parameterisation theorem for multisite post-translational modification systems. J. Theor. Biol., 261(4), 626–636.

    Article  MathSciNet  Google Scholar 

  • Thomson, M., & Gunawardena, J. (2009b). Unlimited multistability in multisite phosphorylation systems. Nature, 460(7252), 274–277.

    Article  Google Scholar 

  • Tomida, T., Hirose, K., Takizawa, A., Shibasaki, F., & Iino, M. (2003). NFAT functions as a working memory of Ca+2 signals in decoding Ca+2 oscillation. EMBO J., 22(15), 3825–3832.

    Article  Google Scholar 

  • Tyson, J. J., & Novák, B. (2008). Temporal organization of the cell cycle. Curr. Biol., 18, R759–R768.

    Article  Google Scholar 

  • Uhr, M. (2012). Structural analysis of inference problems arising in systems biology. PhD thesis, ETH, Zurich.

  • Wang, L., & Sontag, E. (2008). On the number of steady states in a multiple futile cycle. J. Math. Biol., 57, 29–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, Z., & Seger, R. (2009). The ERK signaling cascade—views from different subcellular compartments. BioFactors, 35(5), 407–416.

    Article  Google Scholar 

Download references

Acknowledgements

KH and CC acknowledge financial support from the International Max Planck Research School in Magdeburg and the Research Center “Dynamic Systems” of the Ministry of Education of Saxony-Anhalt, respectively. Finally, we would like to thank the diligent reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Conradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holstein, K., Flockerzi, D. & Conradi, C. Multistationarity in Sequential Distributed Multisite Phosphorylation Networks. Bull Math Biol 75, 2028–2058 (2013). https://doi.org/10.1007/s11538-013-9878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9878-6

Keywords

Navigation