Skip to main content

Advertisement

Log in

A Within-Host Virus Model with Periodic Multidrug Therapy

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper is devoted to the investigation of the effects of periodic drug treatment on a standard within-host virus model. We first introduce the basic reproduction ratio for the model, and then show that the infection free equilibrium is globally asymptotically stable, and the disease eventually disappears if \(\mathcal{R}_{0} < 1\), while there exists at least one positive periodic state and the disease persists when \(\mathcal{R}_{0}>1\). We also consider an optimization problem by shifting the phase of these drug efficacy functions. It turns out that shifting the phase can certainly affect the stability of the infection free steady state. A numerical study is performed to illustrate our analytic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., & Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecol. Lett., 9, 467–484.

    Article  Google Scholar 

  • Bacaër, N., & Guernaoui, S. (2006). The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol., 53, 421–436.

    Article  MathSciNet  MATH  Google Scholar 

  • Browne, C. J., & Pilyugin, S. S. (2012). Periodic multidrug therapy in a within-host virus model. Bull. Math. Biol., 73(3), 562–589.

    Article  MathSciNet  Google Scholar 

  • De Leenheer, P. (2009). Within-host virus models with periodic antiviral therapy. Bull. Math. Biol., 71, 189–210.

    Article  MathSciNet  MATH  Google Scholar 

  • De Leenheer, P., & Smith, H. L. (2003). Virus dynamics: a global analysis. SIAM J. Appl. Math., 63, 1313–1327.

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio \(\mathcal{R}_{0}\) in the models for infectious disease in heterogeneous populations. J. Math. Biol., 28, 365–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Dixit, N. M., & Perelson, A. S. (2004). Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J. Theor. Biol., 226, 95–109.

    Article  MathSciNet  Google Scholar 

  • Earn, D. J. D., Dushoff, J., & Levin, S. A. (2002). Ecology and evolution of the flu. Trends Ecol. Evol., 117, 334–340.

    Article  Google Scholar 

  • d’Onofrio, A. (2005). Periodically varying antiviral therapies: conditions for global stability of the virus free state. Appl. Math. Comput., 168, 945–953.

    Article  MathSciNet  MATH  Google Scholar 

  • Ganem, D., & Prince, A. M. (2004). Hepatitis B virus infection-natural history and clinical consequences. N. Engl. J. Med., 350, 1118–1129.

    Article  Google Scholar 

  • Gilchrist, A. M., Coombs, D., & Perelson, A. S. (2004). Optimizing within-host viral fitness: infected cell lifespan and virion production rate. J. Theor. Biol., 229, 281–288.

    Article  MathSciNet  Google Scholar 

  • Liu, L., Zhao, X.-Q., & Zhou, Y. (2010). A tuberculosis model with seasonality. Bull. Math. Biol., 72, 931–952.

    Article  MathSciNet  MATH  Google Scholar 

  • Lou, J., Lou, Y., & Wu, J. (2012). Threshold virus dynamics with impulsive antiretroviral drug effects. J. Math. Biol., 65, 623–652.

    Article  MathSciNet  MATH  Google Scholar 

  • Lou, Y., & Zhao, X.-Q. (2010). A climate-based malaria transmissionmodel with structured vector population. SIAM J. Appl. Math., 70, 2023–2044.

    Article  MathSciNet  MATH  Google Scholar 

  • Molineaux, L., & Dietz, K. (2000). Review of intra-host models of malaria. Parassitologia, 41, 221–231.

    Google Scholar 

  • Nowak, M. A., & May, R. M. (2000). Virus dynamics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Perelson, A. S., & Nelson, P. W. (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev., 41, 3–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Rong, L., Feng, Z., & Perelson, A. S. (2007). Emergency of HIV-1 drug resistance during antiretrociral treatment. Bull. Math. Biol., 69, 2027–2060.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, H. L., & Walman, P. (1995). The theorey of chemostat. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Thieme, H. R. (1992). Convergence results and Poincaré–Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol., 30, 755–763.

    Article  MathSciNet  MATH  Google Scholar 

  • van den Driessche, P., & Watmough, J. (2000). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48.

    Article  Google Scholar 

  • Wang, W., & Zhao, X.-Q. (2008). Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ., 20, 699–717.

    Article  MATH  Google Scholar 

  • Zhang, F., & Zhao, X.-Q. (2007). A periodic epidemic model in a patchy environment. J. Math. Anal. Appl., 325, 496–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J., Jin, Z., Sun, G.-Q., Sun, X.-D., & Ruan, S. (2012). Modeling seasonal rabies epidemics in China. Bull. Math. Biol., 74, 1226–1251.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, X.-Q. (2003). Dynamical systems in population biology. New York: Springer.

    MATH  Google Scholar 

Download references

Acknowledgements

Research supported in part by the NSERC of Canada and the MITACS of Canada. We are very grateful to two anonymous referees for their comments and suggestions which led to an improvement of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Zhao, XQ. A Within-Host Virus Model with Periodic Multidrug Therapy. Bull Math Biol 75, 543–563 (2013). https://doi.org/10.1007/s11538-013-9820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9820-y

Keywords

Navigation