Skip to main content
Log in

Feeding Currents of the Upside Down Jellyfish in the Presence of Background Flow

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The upside-down jellyfish (Cassiopea spp.) is an ideal organism for examining feeding and exchange currents generated by bell pulsations due to its relatively sessile nature. Previous experiments and numerical simulations have shown that the oral arms play an important role in directing new fluid into the bell from along the substrate. All of this work, however, has considered the jellyfish in the absence of background flow, but the natural environments of Cassiopea and other cnidarians are dynamic. Flow velocities and directions fluctuate on multiple time scales, and mechanisms of particle capture may be fundamentally different in moving fluids. In this paper, the immersed boundary method is used to simulate a simplified jellyfish in flow. The elaborate oral arm structure is modeled as a homogenous porous layer. The results show that the oral arms trap vortices as they form during contraction and expansion of the bell. For constant flow conditions, the vortices are directed gently across the oral arms where particle capture occurs. For variable direction flows, the secondary structures change the overall pattern of the flow around the bell and appear to stabilize regions of mixing around the secondary mouths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arai, M. N. (1996). Functional biology of Scyphozoa (1st ed.). New York: Springer.

    Book  Google Scholar 

  • Bigelow, R. P. (1900). The anatomy and development of Cassiopea xamachana. Mem. Read Boston Soc. Nat. Hist., 5, 191–236.

    Google Scholar 

  • Brusca, R. C., & Brusca, G. J. (2003). Invertebrates (2nd ed.). Sunderland: Sinauer Associates.

    Google Scholar 

  • Colin, S. P., & Costello, J. H. (2003). In situ swimming and feeding behavior of eight co-occurring hydromedusae. Mar. Ecol. Prog. Ser., 253, 305–309.

    Article  Google Scholar 

  • Costello, J. H., & Colin, S. P. (2002). Prey resource use by coexistent hydromedusae from Friday Harbor, Washington. Limnol. Oceanogr., 47(4), 934–942.

    Article  Google Scholar 

  • Dabiri, J. O., Colin, S. P., & Katija, K. (2010). A wake-based correlate of swimming performance and foraging behavior in seven co-occurring jellyfish species. J. Exp. Biol., 213, 1217–1225.

    Article  Google Scholar 

  • Demont, M. E., & Gosline, J. M. (1988). Mechanics of jet propulsion in the hydromedusan jellyfish, Polyorchis pexicillatus: III. A natural resonating bell; the presence and importance of a resonant phenomenon in the locomotor structure. J. Exp. Biol., 134(1), 347–361.

    Google Scholar 

  • Dillon, R. H., Fauci, L. J., Omoto, C., & Yang, X. (2007). Fluid dynamic models of flagellar and ciliary beating. Ann. N.Y. Acad. Sci., 1101, 494–505.

    Article  Google Scholar 

  • Fogelson, A. L., & Guy, R. D. (2008). Immersed-boundary-type models of intravascular platelet aggregation. Comput. Methods Appl. Mech. Eng., 197(25–28), 2087–2104.

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith, B. E., Luo, X., McQueen, D. M., & Peskin, C. S. (2009). Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech., 1, 137–177.

    Article  Google Scholar 

  • Hamlet, C. L., Santhanakrishnan, A., & Miller, L. A. (2011). A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea sp. J. Exp. Biol., 214(11), 1911–1921.

    Article  Google Scholar 

  • Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., & Walden, H. (1973). Measurements of wind-wave growth and swell decay during the joint North Sea wave project (jonswap). Dtsch. Hydrogr. Z., Ergänz.heft, A, 8(12), 95.

    Google Scholar 

  • Hyman, L. H. (1940). The invertebrates: Vol. 1. Protozoa through Ctenophora. New York: McGraw-Hill.

    Google Scholar 

  • Jantzen, C., Wild, C., Rasheed, M., El-Zibdah, M., & Richter, C. (2010). Enhanced pore-water nutrient fluxes by the upside-down jellyfish Cassiopea sp. in a Red Sea coral reef. Mar. Ecol. Prog. Ser., 411, 117–125.

    Article  Google Scholar 

  • Kim, Y., & Peskin, C. S. (2006). 2-D parachute simulation by the immersed boundary method. SIAM J. Sci. Comput., 28(6), 2294–2312.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, Y., Lai, M. C., & Peskin, C. S. (2010). Numerical simulations of two-dimensional foam by the immersed boundary method. J. Comput. Phys., 229(13), 5194–5207.

    Article  MathSciNet  MATH  Google Scholar 

  • Kobashi, D., & Mazda, Y. (2005). Tidal flow in riverine-type mangroves. Wetlands Ecol. Manag., 13, 615–619.

    Article  Google Scholar 

  • Moskowitz, L. (1964). Estimates of the power spectrums for fully developed seas for wind speeds of 20 to 40 knots. J. Geophys. Res., 69(24), 5161–5179.

    Article  Google Scholar 

  • Lipinski, D., & Mohseni, K. (2009). Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequora victoria. J. Exp. Biol., 212, 2436–2447.

    Article  Google Scholar 

  • Mazda, Y., Wolanski, E., King, B., Sase, A., Ohtsuka, D., & Magi, M. (1997). Drag force due to vegetation in mangrove swamps. Mangroves and Salt Marshes, 1, 193–199.

    Article  Google Scholar 

  • Miller, L. A., & Peskin, C. S. (2009). Flexible clap and fling in tiny insect flight. J. Exp. Biol., 212(19), 3076–3090.

    Article  Google Scholar 

  • Mittal, R., & Iaccarino, G. (2005). Immersed boundary methods. Annu. Rev. Fluid Mech., 37, 239–261.

    Article  MathSciNet  Google Scholar 

  • Newren, E. P., Fogelson, A. L., Guy, R. D., & Kirby, R. M. (2007). Unconditionally stable discretizations of the immersed boundary equations. J. Comput. Phys., 222, 702–719.

    Article  MathSciNet  MATH  Google Scholar 

  • Niggl, W., & Wild, C. (2010). Spatial distribution of the upside-down jellyfish Cassiopea sp. Helgol. Mar. Res., 64, 281–287.

    Article  Google Scholar 

  • Peng, J., & Dabiri, J. O. (2009). Transport of inertial particles by Lagrangian coherent structures: application to predator-prey interaction in jellyfish feeding. J. Fluid Mech., 623, 75–84.

    Article  MATH  Google Scholar 

  • Peskin, C. S. (2002). The immersed boundary method. Acta Numer., 11, 479–517. MR 2009378 (2004h:74029).

    Article  MathSciNet  MATH  Google Scholar 

  • Peskin, C. S., & McQueen, D. M. (1996). Fluid dynamics of the heart and its valves. In Case studies in mathematical modeling: ecology, physiology, and cell biology (2nd ed.). New York: Prentice-Hall.

    Google Scholar 

  • Peskin, C. S., & Printz, B. F. (1993). Improved volume conservation in the computation of flows with immersed elastic boundaries. J. Comput. Phys., 105, 33–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C: the art of scientific computing (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sahin, M., Mohseni, K., & Colin, S. P. (2009). The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria. J. Exp. Biol., 212(16), 2656–2667.

    Article  Google Scholar 

  • Santhanakrishnan, A., Nguyen, N., Gunderson, J., & Miller, L. A. (2009). Flow within models of the vertebrate embryonic heart. J. Theor. Biol., 259(3), 449–461.

    Article  Google Scholar 

  • Santhanakrisnan, A., Dollinger, M., Hamlet, C. L., & Miller, L. A. (2012, in press). Flow structure and transport characteristics of the feeding and exchange currents generated by upside-down jellyfish Cassiopea. J. Exp. Biol.

  • Sterrer, W. (1986). Marine fauna and flora of Bermuda: A systematic guide to the identification of marine organisms. New York: Wiley.

    Google Scholar 

  • Stockie, J. M. (2009). Modelling and simulation of porous immersed boundaries. Comput. Struct., 87(11–12), 701–709.

    Article  Google Scholar 

  • Templeman, M. A., & Kingsford, M. J. (2010). Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Mar. Environ. Res., 69(2), 63–72.

    Article  Google Scholar 

  • Teran, J. M., & Peskin, C. S. (2009). Tether force constraints in Stokes flow by the immersed boundary method on a periodic domain. SIAM J. Sci. Comput., 31(5), 3404–3416.

    Article  MathSciNet  MATH  Google Scholar 

  • Teran, J., Fauci, L., & Shelley, M. (2010). Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett., 104(3), 038101.

    Article  Google Scholar 

  • Verduin, J. J., & Backhaus, J. O. (2000). Dynamics of plant-flow interactions for the seagrass Amphibolis antarctica: field observations and model simulations. Estuar. Coast. Shelf Sci., 50, 185–204.

    Article  Google Scholar 

  • Welsh, D. T., Dunn, R. J. K., & Maeziane, T. (2009). Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia, 635, 351–362.

    Article  Google Scholar 

  • West, E. J., Welsh, D. T., & Pitt, K. A. (2009). Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics. Hydrobiologia, 616, 151–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina L. Hamlet.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MOV 12.0 MB)

(MOV 11.8 MB)

(MOV 24.1 MB)

(MOV 31.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamlet, C.L., Miller, L.A. Feeding Currents of the Upside Down Jellyfish in the Presence of Background Flow. Bull Math Biol 74, 2547–2569 (2012). https://doi.org/10.1007/s11538-012-9765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9765-6

Keywords

Navigation