Skip to main content
Log in

Combining Perturbations and Parameter Variation to Influence Mean First Passage Times

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Perturbations are relatively large shocks to state variables that can drive transitions between stable states, while drift in parameter values gradually alters equilibrium magnitudes. This latter effect can lead to equilibrium bifurcation, the generation, or annihilation of equilibria. Equilibrium annihilations reduce the number of equilibria and so are associated with catastrophic population collapse. We study the combination of perturbations and parameter drift, using a two-species intraguild predation (IGP) model. For example, we use bifurcation analysis to understand how parameter drift affects equilibrium number, showing that both competition and predation rates in this model are bifurcating parameters. We then introduce a stochastic process to model the effects of population perturbations. We demonstrate how to evaluate the joint effects of perturbations and drift using the common currency of mean first passage time to transitions between stable states. Our methods and results are quite general, and for example, can relate to issues in both pest control and sustainable harvest. Our results show that parameter drift (1) does not importantly change the expected time to reach target points within a basin of attraction, but (2) can dramatically change the expected time to shift between basins of attraction, through its effects on equilibrium resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen, T., Carstensen, J., Hernandez-Garcia, E., & Duarte, C. (2008). Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol., 24(1), 49.

    Article  Google Scholar 

  • Bampfylde, C. J., & Lewis, M. A. (2007). Biological control through intraguild predation: case studies in pest control, invasive species and range expansion. Bull. Math. Biol., 69(3), 1031.

    Article  MathSciNet  MATH  Google Scholar 

  • Biggs, R., Carpenter, S. R., & Brock, W. A. (2009). Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl. Acad. Sci., 106(3), 826.

    Article  Google Scholar 

  • Carpenter, S. R. (2001). Alternate states of ecosystems: evidence and some implications. Ecology: achievement and challenge. Oxford: Blackwell Science.

    Google Scholar 

  • Chobanov, G. (1999). Modeling financial asset returns with shot noise processes. Math. Comput. Model., 29, 17.

    Article  MathSciNet  MATH  Google Scholar 

  • Collie, J. S., Richardson, K., & Steele, J. H. (2004). Regime shifts: can ecological theory illuminate the mechanisms? Prog. Oceanogr., 60, 281.

    Article  Google Scholar 

  • Covich, A. P. (1977). How do crayfish respond to plants and molluska as alternate food resources? Freshw. Crayfish, 3, 165.

    Google Scholar 

  • Cowpertwait, P., & O’Connell, P. (1992). A Neyman-Scott shot noise model for the generation of daily streamflow time series. In Advances in theoretical hydrology: a tribute to James Dooge.

    Google Scholar 

  • Cox, D. R. (1965). The theory of stochastic processes. New York: Wiley.

    MATH  Google Scholar 

  • Cox, D. R., & Isham, V. (1980). Point processes. London: Chapman Hall.

    MATH  Google Scholar 

  • Cury, P., & Shannon, L. (2004). Regime shifts in upwelling ecosystems: observed changes and possible mechanisms in the northern and southern Benguela. Prog. Oceanogr., 60, 223.

    Article  Google Scholar 

  • Daskalov, G. M., Grishin, A. N., Rodionov, S., & Mihneva, V. (2007). Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proc. Natl. Acad. Sci. USA, 104(25), 10518.

    Article  Google Scholar 

  • Dassios, A., & Jang, J. (2003). Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity.

  • Davenport, W. B., & Root, W. L. (1958). An introduction to the theory of random signals and noise. New York: McGraw-Hill.

    MATH  Google Scholar 

  • De Roos, A. M., & Persson, L. (2002). Size-dependent life-history traits promote catastrophic collapses of top predators. Proc. Natl. Acad. Sci. USA, 99(20), 12907.

    Article  Google Scholar 

  • deYoung, B., Barange, M., Beaugrand, G., Harris, R., Perry, R. I., Scheffer, M., & Werner, F. (2008). Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol. Evol., 23(7), 402.

    Article  Google Scholar 

  • Dorn, N. J., & Mittelbach, G. G. (1999). More than predator and prey: a review of interactions between fish and crayfish. Vie Milieu, Life Environ., 49(4), 229.

    Google Scholar 

  • Drury, K. L. S. (2007). Shot noise perturbations and mean first passage times between stable states. Theor. Popul. Biol., 72, 153.

    Article  MATH  Google Scholar 

  • Drury, K. L. S., & Lodge, D. M. (2008). Using mean first passage times to quantify equilibrium resilience in perturbed intraguild predation systems. Theor. Ecol., 2(1), 41.

    Article  Google Scholar 

  • Drury, K. L. S., Drake, J. M., Lodge, D. M., & Dwyer, G. (2007). Immigration events dispersed in space and time: factors affecting invasion success. Ecol. Model., 206, 63.

    Article  Google Scholar 

  • Dunlop, E. S., Orendorff, J. A., Shuter, B. J., Rodd, F. H., & Ridgway, M. S. (2005). Diet and divergence of introduced smallmouth bass (Micropterus dolomieu) populations. Can. J. Fish. Aquat. Sci., 62, 1720.

    Article  Google Scholar 

  • Gotelli, N. (1995). A primer of ecology. Sunderland: Sinauer Associates.

    Google Scholar 

  • Hill, A. M., & Lodge, D. M. (1999). Replacement of resident crayfishes by an exotic crayfish: the roles of competition and predation. Ecol. Appl., 9(2), 678.

    Article  Google Scholar 

  • Hill, A. M., Sinars, D. M., & Lodge, D. M. (1993). Invasion of an occupied niche by the crayfish Orconectes rusticus: potential importance of growth and mortality. Oecologia, 94, 303.

    Article  Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Ann. Rev. Ecolog. Syst., 4, 1.

    Article  Google Scholar 

  • Kean, J., Wratten, S., Tylianakis, J., & Barlow, N. (2003). The population consequences of natural enemy enhancement, and implications for conservation biological control. Ecol. Lett., 6, 604.

    Article  Google Scholar 

  • Kooijman, B. K. S. A. L., & Grasman, J. (2007). A new class of non-linear stochastic population models with mass conservation. Math. Biosci., 210, 378.

    Article  MathSciNet  MATH  Google Scholar 

  • Laio, F., Porporato, A., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Mean first passage times of processes driven by white shot noise. Phys. Rev. E, 63, 036105.

    Article  Google Scholar 

  • Ludwig, D., Jones, D. D., & Holling, C. S. (1978). Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol., 47, 315.

    Article  Google Scholar 

  • Mailleret, L., & Lemesle, V. (2009). A note on semi-discrete modelling in the life sciences. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 367(1908), 4779.

    Article  MathSciNet  MATH  Google Scholar 

  • Mylius, S. D., Klumpers, K., de Roos, A. M., & Persson, L. (2001). Impact of intraguild predation and stage structure on simple communities along a productivity gradient. Am. Nat., 158(3), 259.

    Article  Google Scholar 

  • Onzo, A., Hanna, R., Negloh, K., Toko, M., & Sabelis, M. W. (2005). Biological control of cassava green mite with exotic and indigenous phytoseiid predators effects of intraguild predation and supplementary food. Biol. Control, 33, 143.

    Article  Google Scholar 

  • Parzen, E. (1962). Stochastic processes. San Francisco: Holden-Day.

    MATH  Google Scholar 

  • Perko, L. (1991). Differential equations and dynamical systems. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Polis, G. A., Myers, C. A., & Holt, R. D. (1989). The ecology and evolution of intraguild predation: potential competitors that eat each other. Ann. Rev. Ecolog. Syst., 20, 297.

    Article  Google Scholar 

  • Poston, T., & Stewart, I. (1978). Catastrophe theory and its applications. Surveys and reference works in mathematics. Boston: Pitman.

    MATH  Google Scholar 

  • Real, L. A. (1977). The kinetics of functional response. Am. Nat., 111(978), 289.

    Article  Google Scholar 

  • Ricker, W. E. (1963). Big effects from small causes: two examples from fish population dynamics. J. Fish. Res. Board Can., 20(2), 257.

    Article  Google Scholar 

  • Rosenthal, S. K., Stevens, S. S., & Lodge, D. M. (2006). Whole-lake effects of invasive crayfish and the potential for restoration. Can. J. Fish. Aquat. Sci., 63, 1276.

    Article  Google Scholar 

  • Scheffer, M., Carpenter, S. R., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591.

    Article  Google Scholar 

  • Sponberg, A. F., & Lodge, D. M. (2005). Seasonal belowground herbivory and a density refuge from waterfowl herbivory for Vallisneria americana. Ecology, 86(8), 2127. Times cited: 0 article English cited references count: 38 953ko.

    Article  Google Scholar 

  • Stein, R. A. (1977). Selective predation, optimal foraging, and the predator-prey interaction between fish and crayfish. Ecology, 58, 1237.

    Article  Google Scholar 

  • Strogatz, S. H. (1994). Nonlinear dynamics and chaos with applications to physics, biology, chemistry, and engineering. Reading: Addison-Wesley.

    Google Scholar 

  • Weisstein, E. W. (2003). “Generalized hypergeometric function” from mathworld—a wolfram web resource.

  • Wilson, K. A., Magnuson, J. J., Lodge, D. M., Hill, A. M., Kratz, T. K., Perry, W. L., & Willis, T. V. (2004). A long-term rusty crayfish (Orconectes rusticus) invasion: dispersal patterns and community change in a north temperate lake. Can. J. Fish. Aquat. Sci., 61, 2255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. S. Drury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drury, K.L.S., Lodge, D.M. Combining Perturbations and Parameter Variation to Influence Mean First Passage Times. Bull Math Biol 74, 1606–1628 (2012). https://doi.org/10.1007/s11538-012-9727-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9727-z

Keywords

Navigation