Skip to main content
Log in

A Multiscale Hybrid Model for Pro-angiogenic Calcium Signals in a Vascular Endothelial Cell

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cytosolic calcium machinery is one of the principal signaling mechanisms by which endothelial cells (ECs) respond to external stimuli during several biological processes, including vascular progression in both physiological and pathological conditions. Low concentrations of angiogenic factors (such as VEGF) activate in fact complex pathways involving, among others, second messengers arachidonic acid (AA) and nitric oxide (NO), which in turn control the activity of plasma membrane calcium channels. The subsequent increase in the intracellular level of the ion regulates fundamental biophysical properties of ECs (such as elasticity, intrinsic motility, and chemical strength), enhancing their migratory capacity. Previously, a number of continuous models have represented cytosolic calcium dynamics, while EC migration in angiogenesis has been separately approached with discrete, lattice-based techniques. These two components are here integrated and interfaced to provide a multiscale and hybrid Cellular Potts Model (CPM), where the phenomenology of a motile EC is realistically mediated by its calcium-dependent subcellular events. The model, based on a realistic 3-D cell morphology with a nuclear and a cytosolic region, is set with known biochemical and electrophysiological data. In particular, the resulting simulations are able to reproduce and describe the polarization process, typical of stimulated vascular cells, in various experimental conditions. Moreover, by analyzing the mutual interactions between multilevel biochemical and biomechanical aspects, our study investigates ways to inhibit cell migration: such strategies have in fact the potential to result in pharmacological interventions useful to disrupt malignant vascular progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (1994). Molecular Biology of the Cell, 3rd ed. Garland Science.

    Google Scholar 

  • Albrecht, M. A., Colegrove, S. L., & Friel, D. D. (2002). Differential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release. J. Gen. Physiol., 119(3), 211–233.

    Google Scholar 

  • Ambrosi, D., Bussolino, F., & Preziosi, L. (2005). A review of vasculogenesis models. J. Theor. Med., 6(1), 1–19.

    MathSciNet  MATH  Google Scholar 

  • Balter, A., Merks, R. M. H., Poplawski, N. J., Swat, M., & Glazier, J. A. (2007). The Glazier-Graner–Hogeweg model: extensions, future directions, and opportunities for further study. In A. R. A. Anderson, M. A. J. Chaplain, & K. A. Rejniak (Eds.), Mathematics and biosciences in interactions. Single-cell-based models in biology and medicine (pp. 157–167). Basel: Birkhäuser.

    Google Scholar 

  • Barbiero, G., Munaron, L., Antoniotti, S., Baccino, F. M., Bonelli, G., & Lovisolo, D. (1995). Role of mitogen-induced calcium influx in the control of the cell cycle in Balb-c 3T3 fibroblasts. Cell Calcium, 18(6), 542–556.

    Google Scholar 

  • Bauer, A. L., Jackson, T. L., & Jiang, Y. (2007). A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J., 92(9), 3105–3121.

    Google Scholar 

  • Bauer, K. S., Cude, K. J., Dixon, S. C., Kruger, E. A., & Figg, W. D. (2000). Carboxyamido-triazole inhibits angiogenesis by blocking the calcium-mediated nitric-oxide synthase-vascular endothelial growth factor pathway. J. Pharmacol. Exp. Theor., 292(1), 31–37.

    Google Scholar 

  • Bayley, P., Ahlström, P., Martin, S. R., & Forsen, S. (1984). The kinetics of calcium binding to calmodulin: Quin 2 and ANS stopped-flow fluorescence studies. Biochem. Biophys. Res. Commun., 120(1), 185–191.

    Google Scholar 

  • Bennett, J., & Weeds, A. (1986). Calcium and the cytoskeleton. Br. Med. Bull., 42(4), 385–390.

    Google Scholar 

  • Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol., 4(7), 517–529.

    Google Scholar 

  • Berridge, M. J. (1995). Calcium signalling and cell proliferation. BioEssays, 17(6), 491–500.

    Google Scholar 

  • Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol., 1(1), 11–21.

    Google Scholar 

  • Berridge, M. J., Bootman, M. D., & Lipp, P. (1998). Calcium—a life and death signal. Nature, 395(6703), 645–648.

    Google Scholar 

  • Blatter, L. A., Taha, Z., Mesaros, S., Shacklock, P. S., Wier, W. G., & Malinski, T. (1995). Simultaneous measurements of Ca2+ and nitric oxide in Bradykinin-stimulated vascular endothelial cells. Circ. Res., 76(5), 922–924.

    Google Scholar 

  • Bootman, M. D., Lipp, P., & Berridge, M. J. (2001). The organization and functions of local Ca2+ signals. J. Cell Sci., 114(12), 2213–2222.

    Google Scholar 

  • Bussolino, F., Arese, M., Audero, E., Giraudo, E., Marchio, S., Mitola, S., Primo, L., & Serini, G. (2003). Biological aspects in tumor angiogenesis. In L. Preziosi (Ed.), Mathematical Biology and Medicine Sciences. Cancer modeling and simulation (pp. 1–16). Boca Raton: CRC Press.

    Google Scholar 

  • Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.

    Google Scholar 

  • Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69(3), 4–10.

    Google Scholar 

  • Chauviere, A., Preziosi, L., & Verdier, C. (Eds.) (2000). Cell mechanics: from single scaled-based models to multiscale modeling. Mathematical and Computational Biology Series. Boca Raton: CRC Press.

    Google Scholar 

  • Clapham, D. E. (2007). Calcium signalling. Cell, 131(6), 1047–1058.

    Google Scholar 

  • Coatesworth, W., & Bolsover, S. (2008). Calcium signal transmission in chick sensory neurones is diffusion based. Cell Calcium, 43(3), 236–249.

    Google Scholar 

  • Dolmetsch, R. E., Xu, K., & Lewis, R. S. (1998). Calcium oscillations increase the efficiency and specificity of gene expression. Nature, 392(6679), 933–936.

    Google Scholar 

  • Drake, C. J., LaRue, A., Ferrara, N., & Little, C. D. (2000). VEGF regulates cell behavior during vasculogenesis. Dev. Biol., 224(2), 178–188.

    Google Scholar 

  • Etienne-Manneville, S. (2004). Cdc42—the centre of polarity. J. Cell Sci., 117(8), 1291–1300.

    Google Scholar 

  • Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L. M., & Rao, A. (2001). Gene regulation mediated by calcium signals in T lymphocytes. Nat. Immunol., 2(4), 316–324.

    Google Scholar 

  • Fink, C. C., Slepchenko, B., Moraru, I. I., Watras, J., Schaff, J. C., & Loew, L. M. (2000). An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys. J., 79(1), 163–183.

    Google Scholar 

  • Fiorio Pla, A., Grange, C., Antoniotti, S., Tomatis, C., Merlino, A., Bussolati, B., & Munaron, L. (2008). Arachidonic acid-induced Ca2+ entry is involved in early steps of tumor angiogenesis. Mol. Cancer. Res., 6(4), 535–545.

    Google Scholar 

  • Fiorio Pla, A., & Munaron, L. (2001). Calcium influx, arachidonic acid, and control of endothelial cell proliferation. Cell Calcium, 30(4), 235–244.

    Google Scholar 

  • Fiorio Pla, A., Genova, T., Pupo, E., Tomatis, C., Genazzani, A., Zaninetti, R., & Munaron, L. (2010). Multiple roles of protein kinase a in arachidonic acid-mediated Ca2+ entry and tumor-derived human endothelial cell migration. Mol. Cancer. Res., 8(11), 1466–1476.

    Google Scholar 

  • Fleming, I., & Busse, R. (1999). Signal transduction of eNOS activation. Cardiovasc. Res., 43(3), 532–541.

    Google Scholar 

  • Funamoto, S., Meili, R., Lee, S., Parry, L., & Firtel, R. A. (2002). Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell, 109(5), 611–623.

    Google Scholar 

  • Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., & Betsholtz, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol., 161(6), 1163–1177.

    Google Scholar 

  • Glazier, J. A., Balter, A., & Poplawski, N. J. (2007). Magnetization to morphogenesis: A brief history of the Glazier-Graner-Hogeweg model. In A. R. A. Anderson, M. A. J. Chaplain, & K. A. Rejniak (Eds.), Mathematics and Biosciences in Interactions. Single-cell-based models in biology and medicine (pp. 79–106). Basel: Birkhäuser.

    Google Scholar 

  • Glazier, J. A., & Graner, F. (1993). Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 47(3), 2128–2154.

    Google Scholar 

  • Goto, Y., Miura, M., & Iijima, T. (1996). Extrusion mechanisms of intracellular Ca2+ in human aortic endothelial cells. Eur. J. Pharmacol, 314(1–2), 185–192.

    Google Scholar 

  • Graner, F., & Glazier, J. A. (1992). Simulation of biological cell sorting using a two dimensional extended Potts model. Phys. Rev. Lett., 69(13), 2013–2016.

    Google Scholar 

  • Haugh, J. M., Codazzi, F., Teruel, M., & Meyer, T. (2000). Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J. Cell Biol., 151(6), 1269–1280.

    Google Scholar 

  • Hong, D., Jaron, D., Buerk, D. G., & Barbee, K. A. (2008). Transport-dependent calcium signaling in spatially segregated cellular caveolar domains. Am. J. Physiol., Cell Physiol., 294(3), C856–C866.

    Google Scholar 

  • Howard, J. (2001). Mechanics of motor proteins and the cytoskeleton. Sinauer Associates: Sunderland.

    Google Scholar 

  • Hryshko, L. V., & Philipson, K. D. (1997). Sodium–calcium exchange: recent advances. Basic Res. Cardiol., 92(1), 45–51.

    Google Scholar 

  • Huang, S., Brangwynne, C. P., Parker, K. K., & Ingber, D. E. (2005). Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: role of random-walk persistence. Cell Motil. Cytoskelet., 61(4), 201–213.

    Google Scholar 

  • Hunding, A., & Ipsen, M. (2003). Simulation of waves in calcium models with 3D spherical geometry. Math. Biosci., 182(1), 45–66.

    MathSciNet  MATH  Google Scholar 

  • Kahl, C. R., & Means, A. R. (2003). Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr. Rev., 24(6), 719–736.

    Google Scholar 

  • Khanapure, S. P., Garvey, D. S., Janero, D. R., & Gordon Letts, L. (2007). Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr. Top. Med. Chem., 7(3), 311–340.

    Google Scholar 

  • Kimura, H., & Esumi, H. (2003). Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim. Pol., 50(1), 49–59.

    Google Scholar 

  • Klingauf, J., & Neher, E. (1997). Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys. J., 72, 2 (Pt 1), 674–690.

    Google Scholar 

  • Kohn, E. C., Sandeen, M. A., & Liotta, L. A. (1992). In vivo efficacy of a novel inhibitor of selected signal transduction pathways including calcium, arachidonate, and inositol phosphates. Cancer Res., 52(11), 3208–3212.

    Google Scholar 

  • Kohn, E. C., & Liotta, L. A. (1990). L651582: a novel antiproliferative and antimetastasis agent. J. Natl. Cancer Inst., 82(1), 54–60.

    Google Scholar 

  • Kraus, M., Wolf, B., & Wolf, B. (1996). Crosstalk between cellular morphology and calcium oscillation patterns. Insights from a stochastic computer model. Cell Calcium, 19(6), 461–472.

    Google Scholar 

  • Kwan, H.-Y., Huang, Y., & Yao, X. (2007). TRP channels in endothelial function and dysfunction. Biochim. Biophys. Acta, 1772(8), 907–914.

    Google Scholar 

  • Jafri, M. S., & Keizer, J. (1995). On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys. J., 69(5), 2139–2153.

    Google Scholar 

  • Lancaster, J. R. Jr. (1997). A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide, 1(1), 18–30.

    Google Scholar 

  • Lin, S., Fagan, K. A., Li, K.-X., Shaul, P. W., Cooper, D. M. F., & Rodman, D. M. (2000). Sustained endothelial nitric oxide synthase activation requires capacitative Ca2+ entry. J. Biol. Chem., 275(24), 17979–17985.

    Google Scholar 

  • Lovisolo, D., Distasi, C., Antoniotti, S., & Munaron, L. (1997). Mitogens and calcium channels. News Physiol. Sci., 12, 279–285.

    Google Scholar 

  • Mac Gabhann, F., & Popel, A. S. (2004). Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am. J. Physiol., Heart Circ. Physiol., 286(1), H153–H164.

    Google Scholar 

  • Mahoney, A. W., Smith, B. G., Flann, N. S., & Podgorski, G. J. (2008). Discovering novel cancer therapies: a computational modeling and search approach. In IEEE conference on computational intelligence in bioinformatics and bioengineering (pp. 233–240).

    Google Scholar 

  • Marée, A. F. M., Grieneisen, V. A., & Hogeweg, P. (2007). The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis. In A. R. A. Anderson, M. A. J. Chaplain, & K. A. Rejniak (Eds.), Mathematics and Biosciences in Interactions. Single-cell-based models in biology and medicine (pp. 107–136). Basel: Birkhäuser.

    Google Scholar 

  • Marée, A. F. M., Jilkine, A., Dawes, A., Grieneisen, V. A., & Edelstein-Keshet, L. (2006). Polarization and movement of keratocytes: A multiscale modelling approach. Bull. Math. Biol., 68(5), 1169–1211.

    Google Scholar 

  • Meili, R., & Firtel, R. A. (2003). Two poles and a compass. Cell, 114(2), 153–156.

    Google Scholar 

  • Merks, R. M. H., & Glazier, J. A. (2006). Dynamic mechanisms of blood vessel growth. Nonlinearity, 19(1), C1–C10.

    MathSciNet  MATH  Google Scholar 

  • Merks, R. M. H., Brodsky, S. V., Goligorksy, M. S., Newman, S. A., & Glazier, J. A. (2006). Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289(1), 44–54.

    Google Scholar 

  • Merks, R. M. H., Perryn, E. D., Shirinifard, A., & Glazier, J. A. (2008). Contact-inhibited chemotactic motility: role in de novo and sprouting blood vessel growth. PLoS Comput. Biol., 4(9), e1000163.

    MathSciNet  Google Scholar 

  • Merks, R. M. H., & Koolwijk, P. (2009). Modeling morphogenesis in silico and in vitro: towards quantitative, predictive, cell-based modeling. Math. Model. Nat. Phenom., 4(4), 149–171.

    MathSciNet  MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys., 21(6), 1087–1092.

    Google Scholar 

  • Mittara, S., Ulyatt, C., Howell, G. J., Bruns, A. F., Zachary, I., Walker, J. H., & Ponnambalam, S. (2009). VEGFR1 receptor tyrosine kinase localization to the Golgi apparatus is calcium-dependent. Exp. Cell Res., 315(5), 877–889.

    Google Scholar 

  • Moccia, F., Berra-Romani, R., Baruffi, S., Spaggiari, S., Signorelli, S., Castelli, L., Magistretti, J., Taglietti, V., & Tanzi, F. (2002). Ca2+ uptake by the endoplasmic reticulum Ca2+—ATPase in rat microvascular endothelial cells. Biochem. J., 364(1), 235–244.

    Google Scholar 

  • Mottola, A., Antoniotti, S., Lovisolo, D., & Munaron, L. (2005). Regulation of noncapacitative calcium entry by arachidonic acid and nitric oxide in endothelial cells. FASEB J., 19(14), 2075–2077.

    Google Scholar 

  • Munaron, L. (2002). Calcium signalling and control of cell proliferation by tyrosine kinase receptors (review). Int. J. Mol. Med., 10(6), 671–676.

    Google Scholar 

  • Munaron, L. (2006). Intracellular calcium, endothelial cells and angiogenesis. Recent Pat Anticancer Drug Discov, 1(1), 105–119.

    Google Scholar 

  • Munaron, L., Antoniotti, S., Fiorio Pla, A., & Lovisolo, D. (2004). Blocking Ca2+ entry: a way to control cell proliferation. Curr. Med. Chem., 11(12), 1533–1543.

    Google Scholar 

  • Munaron, L., Antoniotti, S., & Lovisolo, D. (2004). Intracellular calcium signals and control of cell proliferation: how many mechanisms? J. Cell. Mol. Med., 8(2), 161–168.

    Google Scholar 

  • Munaron, L., & Fiorio Pla, A. (2000). Calcium influx induced by activation of tyrosine kinase receptors in cultured bovine aortic endothelial cells. J. Cell. Physiol., 185(3), 454–463.

    Google Scholar 

  • Munaron, L., Tomatis, C., & Fiorio Pla, A. (2008). The secret marriage between calcium and tumor angiogenesis. Technol. Cancer. Res. Treat., 7(4), 335–339.

    Google Scholar 

  • Munaron, L. (2009). A tridimensional model of proangiogenic calcium signals in endothelial cells. Open Biol. J., 2, 114–129.

    Google Scholar 

  • Munaron, L., & Fiorio Pla, A. (2009). Endothelial calcium machinery and angiogenesis: understanding physiology to interfere with pathology. Curr. Med. Chem., 16(35), 4691–4703.

    Google Scholar 

  • Nilius, B., & Droogmans, G. (2001). Ion channels and their functional role in vascular endothelium. Physiol. Rev., 81(4), 1415–1459.

    Google Scholar 

  • Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol., 144(6), 1235–1244.

    Google Scholar 

  • Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 87(1), 315–424.

    Google Scholar 

  • Patton, A. M., Kassis, J., Doong, H., & Kohn, E. C. (2003). Calcium as a molecular target in angiogenesis. Curr. Pharm. Des., 9(7), 543–551.

    Google Scholar 

  • Perryn, E. D., Czirók, A., & Little, C. D. (2008). Vascular sprout formation entails tissue deformations and VE-cadherin dependent cell-autonomous motility. Dev. Biol., 313(2), 545–555.

    Google Scholar 

  • Pollard, T. D., & Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112(4), 453–465.

    Google Scholar 

  • Pollock, J. S., Förstermann, U., Mitchell, J. A., Warner, T. D., Schmidt, H. H. H. W., Nakane, M., & Murad, F. (1991). Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA, 88(23), 10480–10484.

    Google Scholar 

  • Poplawski, N. J., Shirinifard, A., Swat, M., & Glazier, J. A. (2008). Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Math. Biosci. Eng., 5(2), 355–388.

    MathSciNet  MATH  Google Scholar 

  • Rafelski, S. M., & Theriot, J. A. (2004). Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem., 73, 209–239.

    Google Scholar 

  • Rizzuto, R., Duchen, M. R., & Pozzan, T. (2004). Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci. STKE, 2004(215), 1.

    Google Scholar 

  • Santella, L. (1998). The role of calcium in the cell cycle: facts and hypotheses. Biochem. Biophys. Res. Commun., 244(2), 317–324.

    Google Scholar 

  • Savill, N. J., & Hogeweg, P. (1997). Modeling morphogenesis: from single cells to crawling slugs. J. Theor. Biol., 184, 229–235.

    Google Scholar 

  • Scianna, M., Merks, R. M. H., Preziosi, L., & Medico, E. (2009). Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor. J. Theor. Biol., 260(1), 151–160.

    Google Scholar 

  • Scianna, M., Munaron, L., & Preziosi, L. (2011). A multiscale hybrid approach for vasculogenesis and related potential blocking therapies. Prog. Biophys. Mol. Biol., 106(2), 450–462.

    Google Scholar 

  • Scianna, M., & Preziosi, L. (2010). Multiscale developments of the cellular Potts model. Submitted.

  • Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., & Bussolino, F. (2003). Modeling the early stages of vascular network assembly. EMBO J., 22(8), 1771–1779.

    Google Scholar 

  • Sneyd, J., Keizer, J., & Sanderson, M. J. (1995). Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J., 9(14), 1463–1472.

    Google Scholar 

  • Sneyd, J., & Keizer, J. (2009). Mathematical physiology. Interdisciplinary applied mathematics series. Berlin: Springer.

    Google Scholar 

  • Steinberg, M. S. (1963). Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science, 141, 401–408.

    Google Scholar 

  • Steinberg, M. S. (1970). Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool., 173(4), 395–433.

    Google Scholar 

  • Takai, Y., Sasaki, T., & Matozaki, T. (2001). Small GTP-binding proteins. Physiol. Rev., 81(1), 153–208.

    Google Scholar 

  • Tomatis, C., Fiorio Pla, A., & Munaron, L. (2007). Cytosolic calcium microdomains by arachidonic acid and nitric oxide in endothelial cells. Cell Calcium, 41(3), 261–269.

    Google Scholar 

  • Tosin, A., Ambrosi, D., & Preziosi, L. (2006). Mechanics and chemotaxis in the morphogenesis of vascular networks. Bull. Math. Biol., 68(7), 1819–1836.

    MathSciNet  Google Scholar 

  • Valant, P. A., Adjei, P. N., & Haynes, D. H. (1992). Rapid Ca2+ extrusion via the Na+/Ca2+ exchanger of the human platelet. J. Membr. Biol., 130(1), 63–82.

    Google Scholar 

  • Walther, T., Reinsch, H., Große, A., Ostermann, K., Deutsch, A., & Bley, T. (2004). Mathematical modeling of regulatory mechanisms in yeast colony development. J. Theor. Biol., 229(3), 327–338.

    Google Scholar 

  • Wang, D., Lehman, R. E., Donner, D. B., Matli, M. R., Warren, R. S., & Welton, M. L. (2002). Expression and endocytosis of VEGF and its receptors in human colonic vascular endothelial cells. Am. J. Physiol. Gastrointest Liver Physiol., 282(6), 1088–1096.

    Google Scholar 

  • Wang, S., Li, X., Parra, M., Verdin, E., Bassel-Duby, R., & Olson, E. N. (2008). Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc. Natl. Acad. Sci. USA, 105(22), 7738–7743.

    Google Scholar 

  • Wang, N., Tytell, J. D., & Ingber, D. E. (2009). Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol., 10(1), 75–82.

    Google Scholar 

  • Watson, E. L., Jacobson, K. L., Singh, J. C., & DiJulio, D. H. (2004). Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide. Cell Signal, 16(2), 157–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Scianna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scianna, M. A Multiscale Hybrid Model for Pro-angiogenic Calcium Signals in a Vascular Endothelial Cell. Bull Math Biol 74, 1253–1291 (2012). https://doi.org/10.1007/s11538-011-9695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9695-8

Keywords

Navigation