Skip to main content
Log in

The Performance of a Microbial Fuel Cell Depends Strongly on Anode Geometry: A Multidimensional Modeling Study

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A multidimensional biofilm model is developed to simulate biofilm growth on the anode of a Microbial Fuel Cell (MFC). The biofilm is treated as a conductive material, and electrons produced during microbial growth are assumed to be transferred to the anode through a conductive biofilm matrix. Growth of Geobacter sulfurreducens is simulated using the Nernst–Monod kinetic model that was previously developed and later validated in experiments. By implementing a conduction-based biofilm model in two dimensions, we are able to explore the impact of anode density and arrangement on current production in a MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adalsteinsson, D., & Sethian, J. (1995). A fast level set method for propagating interfaces. J. Comput. Phys., 118(2), 269–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Alpkvist, E., & Klapper, I. (2007a). Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Sci. Technol., 55(8–9), 265–273.

    Google Scholar 

  • Alpkvist, E., & Klapper, I. (2007b). A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull. Math. Biol., 69, 765–789.

    Article  Google Scholar 

  • Berk, R., & Canfield, J. (1964). Bioelectrochemical energy conversion. Appl. Environ. Microbiol., 12(1), 10.

    Google Scholar 

  • Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 69(3), 1548–1555.

    Article  Google Scholar 

  • Chambless, J. D., & Stewart, P. S. (2007). A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms. Biotechnol. Bioeng., 97(6), 1573–1584.

    Article  Google Scholar 

  • Chopp, D. (2001). Some improvements of the fast marching method. SIAM J. Sci. Comput., 23, 230.

    Article  MathSciNet  MATH  Google Scholar 

  • Clauwaert, P., Aelterman, P., Pham, T. H., De Schamphelaire, L., Carballa, M., Rabaey, K., & Verstraete, W. (2008). Minimizing losses in bio-electrochemical systems: The road to applications. Appl. Microbiol. Biotechnol., 79(6), 901–913.

    Article  Google Scholar 

  • Duddu, R., Bordas, S., Chopp, D. L., & Moran, B. (2008). A combined extended finite element and level set method for biofilm growth. Int. J. Numer. Methods Eng., 74(5), 848–870.

    Article  MathSciNet  MATH  Google Scholar 

  • Duddu, R., Chopp, D. L., & Moran, B. (2009). A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol. Bioeng., 103(1), 92–104.

    Article  Google Scholar 

  • Franks, A., Nevin, K., Jia, H., Izallalen, M., Woodard, T., & Lovley, D. (2009). Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ. Sci., 2(1), 113–119.

    Article  Google Scholar 

  • He, Z., Minteer, S., & Angenent, L. (2005). Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol., 39(14), 5262–5267.

    Article  Google Scholar 

  • Klapper, I., Rupp, C. J., Cargo, R., Purvedorj, B., & Stoodley, P. (2002). Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol. Bioeng., 80(3), 289–296.

    Article  Google Scholar 

  • Lee, H., Torres, C., & Rittmann, B. (2009). Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria. Environ. Sci. Technol., 43(19), 7571–7577.

    Article  Google Scholar 

  • LeVeque, R. J., & Li, Z. (1994). The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal., 31(4), 1019–1044.

    Article  MathSciNet  MATH  Google Scholar 

  • Lide, D. R. (1990). CRC handbook of chemistry and physics (70th edn.). Boca Raton: CRC Press.

    Google Scholar 

  • Logan, B., Call, D., Cheng, S., Hamelers, H., Sleutels, T., Jeremiasse, A., & Rozendal, R. (2008). Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol., 42(23), 8630–8640.

    Article  Google Scholar 

  • Logan, B., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol., 41(9), 3341–3346.

    Article  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 40(17), 5181–5192.

    Article  Google Scholar 

  • Logan, B. E., & Regan, J. M. (2006a). Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol., 14(12), 512–518.

    Article  Google Scholar 

  • Logan, B. E., & Regan, J. M. (2006b). Microbial fuel cells-challenges and applications. Environ. Sci. Technol., 40(17), 5172–5180.

    Article  Google Scholar 

  • Lovley, D. R. (2008). The microbe electric: Conversion of organic matter to electricity. Curr. Opin. Biotechnol., 19(6), 564–571.

    Article  Google Scholar 

  • Marcus, A., Torres, C., & Rittmann, B. (2010). Evaluating the impacts of migration in the biofilm anode using the model PCBIOFILM. Electrochim. Acta, 55, 6964–6972.

    Article  Google Scholar 

  • Marcus, A., Torres, C., & Rittmann, B. (2011). Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model. Bioresour. Technol., 102(1), 253–262.

    Article  Google Scholar 

  • Marcus, A. K., Torres, C. I., & Rittmann, B. E. (2007). Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng., 98(6), 1171–1182.

    Article  Google Scholar 

  • Merkey, B. V., Rittmann, B. E., & Chopp, D. L. (2009). Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms. J. Theor. Biol., 259(4), 670–683.

    Article  Google Scholar 

  • Min, B., Kim, J., Oh, S., Regan, J., & Logan, B. (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Res., 39(20), 4961–4968.

    Article  Google Scholar 

  • Morgenroth, E., & Wilderer, P. A. (2000). Influence of detachment mechanisms on competition in biofilms. Water Res., 34(2), 417–426.

    Article  Google Scholar 

  • Osher, S., & Sethian, J. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1), 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Picioreanu, C., Kreft, J. U., Klausen, M., Haagensen, J. A. J., Tolker-Nielsen, T., & Molin, S. (2007). Microbial motility involvement in biofilm structure formation—a 3D modelling study. Water Sci. Technol., 55(8–9), 337–343.

    Google Scholar 

  • Picioreanu, C., van Loosdrecht, M., Curtis, T., & Scott, K. (2010). Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry, 78(1), 8–24.

    Article  Google Scholar 

  • Picioreanu, C., van Loosdrecht, M. C., & Heijnen, J. J. (1999). Discrete-differential modelling of biofilm structure. Water Sci. Technol., 39(7), 115–122.

    Article  Google Scholar 

  • Picioreanu, C., van Loosdrecht, M. C., & Heijnen, J. J. (2001). Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol. Bioeng., 72(2), 205–218.

    Article  Google Scholar 

  • Pozrikidis, C. (1997). Introduction to theoretical and computational fluid dynamics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Reguera, G., Nevin, K., Nicoll, J., Covalla, S., Woodard, T., & Lovley, D. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol., 72(11), 7345.

    Article  Google Scholar 

  • Rittmann, B. E. (1982). The effect of shear stress on biofilm loss rate. Biotechnol. Bioeng., 24(2), 501–506.

    Article  Google Scholar 

  • Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and applications. New York: McGraw-Hill.

    Google Scholar 

  • Rittmann, B. E., Torres, C. I., & Marcus, A. K. (2008). Understanding the distinguishing features of a microbial fuel cell as a biomass-based renewable energy technology. In V. Shah (Ed.), Emerging environmental technologies (pp. 1–28). Berlin: Springer.

    Chapter  Google Scholar 

  • Smith, B. G., Vaughan, B. L., & Chopp, D. L. (2007). The eXtended Finite Element Method for boundary layer problems in biofilm growth. Commun. Appl. Math. Comput. Sci., 2(1), 35–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart, P. (2003). Diffusion in biofilms. J. Bacteriol., 185(5), 1485.

    Article  Google Scholar 

  • Tender, L., Reimers, C., Stecher, H., Holmes, D., Bond, D., Lowy, D., Pilobello, K., Fertig, S., & Lovley, D. (2002). Harnessing microbially generated power on the seafloor. Nat. Biotechnol., 20(8), 821–825.

    Google Scholar 

  • Torres, C., Krajmalnik-Brown, R., Parameswaran, P., Marcus, A., Wanger, G., Gorby, Y., & Rittmann, B. (2009). Selecting anode-respiring bacteria based on anode potential: Phylogenetic, electrochemical, and microscopic characterization. Environ. Sci. Technol., 43(24), 9519–9524.

    Article  Google Scholar 

  • Torres, C., Marcus, A., Lee, H., Parameswaran, P., Krajmalnik-Brown, R., & Rittmann, B. (2010). A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev., 34(1), 3–17.

    Article  Google Scholar 

  • Torres, C., Marcus, A., Parameswaran, P., & Rittmann, B. (2008a). Kinetic experiments for evaluating the Nernst–Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ. Sci. Technol., 42(17), 6593–6597.

    Article  Google Scholar 

  • Torres, C., Marcus, A., & Rittmann, B. (2008b). Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng., 100(5), 872–881.

    Article  Google Scholar 

  • Vaughan, B., Smith, B., & Chopp, D. (2010). The influence of fluid flow on modeling quorum sensing in bacterial biofilms. Bull. Math. Biol., 72, 1143–1165.

    Article  MATH  Google Scholar 

  • Wanner, O., Eberl, H., van Loosdrecht, M., Morgenroth, E., Noguera, D., Picioreanu, C., & Rittmann, B. (2006). Mathematical modeling of biofilms. Technical report, International Water Association.

  • Wanner, O., & Gujer, W. (1986). A multispecies biofilm model. Biotechnol. Bioeng., 28, 314–328.

    Article  Google Scholar 

  • Wäsche, S., Horn, H., & Hempel, D. C. (2002). Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Res., 36(19), 4775–4784.

    Article  Google Scholar 

  • Xavier, J., Picioreanu, C., & van Loosdrecht, M. C. (2005). A general description of detachment for multidimensional modelling of biofilms. Biotechnol. Bioeng., 91(6), 651–669.

    Article  Google Scholar 

  • Zhang, X.-C., & Halme, A. (1995). Modelling of a microbial fuel cell process. Biotech. Lett., 17(8), 809–814.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian V. Merkey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkey, B.V., Chopp, D.L. The Performance of a Microbial Fuel Cell Depends Strongly on Anode Geometry: A Multidimensional Modeling Study. Bull Math Biol 74, 834–857 (2012). https://doi.org/10.1007/s11538-011-9690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9690-0

Keywords

Navigation