Skip to main content
Log in

A Global Parallel Model Based Design of Experiments Method to Minimize Model Output Uncertainty

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Model-based experiment design specifies the data to be collected that will most effectively characterize the biological system under study. Existing model-based design of experiment algorithms have primarily relied on Fisher Information Matrix-based methods to choose the best experiment in a sequential manner. However, these are largely local methods that require an initial estimate of the parameter values, which are often highly uncertain, particularly when data is limited. In this paper, we provide an approach to specify an informative sequence of multiple design points (parallel design) that will constrain the dynamical uncertainty of the biological system responses to within experimentally detectable limits as specified by the estimated experimental noise. The method is based upon computationally efficient sparse grids and requires only a bounded uncertain parameter space; it does not rely upon initial parameter estimates. The design sequence emerges through the use of scenario trees with experimental design points chosen to minimize the uncertainty in the predicted dynamics of the measurable responses of the system. The algorithm was illustrated herein using a T cell activation model for three problems that ranged in dimension from 2D to 19D. The results demonstrate that it is possible to extract useful information from a mathematical model where traditional model-based design of experiments approaches most certainly fail. The experiments designed via this method fully constrain the model output dynamics to within experimentally resolvable limits. The method is effective for highly uncertain biological systems characterized by deterministic mathematical models with limited data sets. Also, it is highly modular and can be modified to include a variety of methodologies such as input design and model discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asprey, S. P., & Macchietto, S. (2002). Designing robust optimal dynamic experiments,. J. Process Control, 12, 545–556.

    Article  Google Scholar 

  • Atkinson, A. C., & Bailey, R. A. (2001). One hundred years of the design of experiments on and off the pages of biometrika. Biometrika, 88, 53–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Balsa-Canto, E., Alonso, A. A., & Banga, J. R. (2008). Computational procedures for optimal experimental design in biological systems. IET Syst. Biol., 2, 163–172.

    Article  Google Scholar 

  • Balsa-Canto, E., Alonso, A. A., & Banga, J. R. (2010). An iterative identification procedure for dynamic modeling of biochemical networks. BMC Syst. Biol., 4.

  • Bandara, S., Schloder, J. P., Eils, R., Bock, H. G., & Meyer, T. (2009). Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput. Biol., 5, e1000558.

    Article  Google Scholar 

  • Bazil, J. N. (2010). An integrated bioenergetics modeling approach to mitochondrial permeability transition. Purdue University, Weldon School of Biomedical Engineering.

  • Beck, J. V., & Woodbury, K. A. (1998). Inverse problems and parameter estimation: integration of measurements and analysis. Meas. Sci. Technol., 9, 839–847.

    Article  Google Scholar 

  • Box, J. F. (1980). Fisher, R.A. and the design of experiments, 1922–1926. Am. Stat., 34, 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  • Box, G. E. P., & Hill, W. J. (1967). Discrimination among mechanistic models. Technometrics, 9, 57–71.

    Article  MathSciNet  Google Scholar 

  • Buzzard, G. T. (in submission). Efficient basis change for sparse-grid interpolating polynomials.

  • Buzzard, G. T., & Xiu, D. B. (2011). Variance-based global sensitivity analysis via sparge-grid interpolation and cubature. Commun. Comput. Phys., 9, 542–567.

    MathSciNet  Google Scholar 

  • Casey, F. P., et al. (2006). Optimal experimental design in an egfr signaling and down-regulation model. eprint arXiv:q-bio/0610024.

  • Chen, B. H., & Asprey, S. P. (2003). On the design of optimally informative dynamic experiments for model discrimination in multiresponse nonlinear situations. Ind. Eng. Chem. Res., 42, 1379–1390.

    Article  Google Scholar 

  • Cho, K. H., Shin, S. Y., Kolch, W., & Wolkenhauer, O. (2003). Experimental design in systems biology, based on parameter sensitivity analysis using a Monte Carlo method: a case study for the Tnf alpha-mediated Nf-kappa B signal transduction pathway. Simulation, 79, 726–739.

    Article  Google Scholar 

  • Chu, Y. F., & Hahn, J. (2008). Integrating parameter selection with experimental design under uncertainty for nonlinear dynamic systems. AIChE J., 54, 2310–2320.

    Article  Google Scholar 

  • Chu, Y. F., & Hahn, J. (2010). Quantitative optimal experimental design using global sensitivity analysis via quasi-linearization. Ind. Eng. Chem. Res., 49, 7782–7794.

    Article  Google Scholar 

  • Donahue, M. M., Buzzard, G. T., & Rundell, A. E. (2010). Experiment design through dynamical characterisation of non-linear systems biology models utilising sparse grids. IET Syst. Biol., 4, 249–262.

    Article  Google Scholar 

  • Donckels, B. M. R., De Pauw, D. J. W., De Baets, B., Maertens, J., & Vanrolleghem, P. A. (2009). An anticipatory approach to optimal experimental design for model discrimination. Chemom. Intell. Lab. Syst., 95, 53–63.

    Article  Google Scholar 

  • Emery, A. F., Nenarokomov, A. V., & Fadale, T. D. (2000). Uncertainties in parameter estimation: the optimal experiment design. Int. J. Heat Mass Transf., 43, 3331–3339.

    Article  MATH  Google Scholar 

  • Espie, D., & Macchietto, S. (1989). The optimal-design of dynamic experiments. AIChE J., 35, 223–229.

    Article  Google Scholar 

  • Ferraris, G. B., Forzatti, P., Emig, G., & Hofmann, H. (1984). Sequential experimental-design for model discrimination in the case of multiple responses. Chem. Eng. Sci., 39, 81–85.

    Article  Google Scholar 

  • Franceschini, G., & Macchietto, S. (2005). A numerical experiment design study on a biodiesel production process. In European symposium on computer-aided process engineering-15 (Vols. 20a–20b, pp. 349–354).

    Google Scholar 

  • Franceschini, G., & Macchietto, S. (2007). Validation of a model for biodiesel production through model-based experiment design. Ind. Eng. Chem. Res., 46, 220–232.

    Article  Google Scholar 

  • Franceschini, G., & Macchietto, S. (2008a). Model-based design of experiments for parameter precision: state of the art. Chem. Eng. Sci., 63, 4846–4872.

    Article  Google Scholar 

  • Franceschini, G., & Macchietto, S. (2008b). Anti-correlation approach to model-based experiment design: application to a biodiesel production process. Ind. Eng. Chem. Res., 47, 2331–2348.

    Article  Google Scholar 

  • Franceschini, G., & Macchietto, S. (2008c). Novel anticorrelation criteria for model-based experiment design: theory and formulations. AIChE J., 54, 1009–1024.

    Article  Google Scholar 

  • Gadkar, K. G., Gunawan, R., & Doyle, F. J. (2005). Iterative approach to model identification of biological networks. BMC Bioinf., 6.

  • Galvanin, F., Macchietto, S., & Bezzo, F. (2007). Model-based design of parallel experiments. Ind. Eng. Chem. Res., 46, 871–882.

    Article  Google Scholar 

  • Gerstner, T., & Griebel, M. (2003). Dimension-adaptive tensor-product quadrature. Computing, 71, 65–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Gulpinar, N., Rustem, B., & Settergren, R. (2004). Simulation and optimization approaches to scenario tree generation. J. Econ. Dyn. Control, 28, 1291–1315.

    Article  MathSciNet  Google Scholar 

  • Gutenkunst, R. N., et al. (2007). Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol., 3, 1871–1878.

    Article  MathSciNet  Google Scholar 

  • He, F., Brown, M., & Yue, H. (2010). Maximin and Bayesian robust experimental design for measurement set selection in modelling biochemical regulatory systems. Int. J. Robust Nonlinear Control, 20, 1059–1078.

    Article  MathSciNet  Google Scholar 

  • Hoyland, K., & Wallace, S. W. (2001). Generating scenario trees for multistage decision problems. Manag. Sci., 47, 295–307.

    Article  Google Scholar 

  • Joshi, M., Seidel-Morgenstern, A., & Kremling, A. (2006). Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems. Metab. Eng., 8, 447–455.

    Article  Google Scholar 

  • Klimke, A., & Wohlmuth, B. (2005). Algorithm 847: {Spinterp}: piecewise multilinear hierarchical sparse grid interpolation in {Matlab}. ACM Trans. Math. Softw., 31.

  • Kremling, A., et al. (2004). A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions. Genome Res., 14, 1773–1785.

    Article  Google Scholar 

  • Kreutz, C., & Timmer, J. (2009). Systems biology: experimental design. FEBS J., 276, 923–942.

    Article  Google Scholar 

  • Kreutz, C., et al. (2007). An error model for protein quantification. Bioinformatics, 23, 2747–2753.

    Article  Google Scholar 

  • Kutalik, Z., Cho, K. H., & Wolkenhauer, O. (2004). Optimal sampling time selection for parameter estimation in dynamic pathway modeling. Biosystems, 75, 43–55.

    Article  Google Scholar 

  • Lillacci, G., & Khammash, M. (2010). Parameter estimation and model selection in computational biology. PLoS Comput. Biol., 6, e1000696.

    Article  MathSciNet  Google Scholar 

  • Lipniacki, T., Hat, B., Faeder, J. R., & Hlavacek, W. S. (2008). Stochastic effects and bistability in T cell receptor signaling. J. Theor. Biol., 254, 110–122.

    Article  Google Scholar 

  • Preece, D. A. (1990). Fisher, R.A. and experimental-design—a review. Biometrics, 46, 925–935.

    Article  MATH  Google Scholar 

  • Pritchard, D. J., & Bacon, D. W. (1974). Potential pitfalls in model discrimination. Can. J. Chem. Eng., 52, 103–109.

    Article  Google Scholar 

  • Pritchard, D. J., & Bacon, D. W. (1978). Prospects for reducing correlations among parameter estimates in kinetic-models. Chem. Eng. Sci., 33, 1539–1543.

    Article  Google Scholar 

  • Pronzato, L. (2008). Optimal experimental design and some related control problems. Automatica, 44, 303–325.

    Article  MathSciNet  Google Scholar 

  • Pronzato, L., & Walter, E. (1994). Minimum-volume ellipsoids containing compact-sets—application to parameter bounding. Automatica, 30, 1731–1739.

    Article  MathSciNet  MATH  Google Scholar 

  • Rodriguez-Fernandez, M., Mendes, P., & Banga, J. R. (2006). A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems, 83, 248–265.

    Article  Google Scholar 

  • Van Derlinden, E., Bernaerts, K., & Van Impe, J. F. (2010). Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature. J. Theor. Biol., 264, 347–355.

    Article  Google Scholar 

  • Vatcheva, I., de Jong, H., Bernard, O., & Mars, N. J. I. (2006). Experiment selection for the discrimination of semi-quantitative models of dynamical systems. Artif. Intell., 170, 472–506.

    Article  MATH  Google Scholar 

  • Wong, W. K. (1999). Recent advances in multiple-objective design strategies. Stat. Neerl., 53, 257–276.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann E. Rundell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazil, J.N., Buzzard, G.T. & Rundell, A.E. A Global Parallel Model Based Design of Experiments Method to Minimize Model Output Uncertainty. Bull Math Biol 74, 688–716 (2012). https://doi.org/10.1007/s11538-011-9686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9686-9

Keywords

Navigation