Skip to main content
Log in

A Continuum Three-Zone Model for Swarms

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a progression of three distinct three-zone, continuum models for swarm behavior based on social interactions with neighbors in order to explain simple coherent structures in popular biological models of aggregations. In continuum models, individuals are replaced with density and velocity functions. Individual behavior is modeled with convolutions acting within three interaction zones corresponding to repulsion, orientation, and attraction, respectively. We begin with a variable-speed first-order model in which the velocity depends directly on the interactions. Next, we present a variable-speed second-order model. Finally, we present a constant-speed second-order model that is coordinated with popular individual-based models. For all three models, linear stability analysis shows that the growth or decay of perturbations in an infinite, uniform swarm depends on the strength of attraction relative to repulsion and orientation. We verify that the continuum models predict the behavior of a swarm of individuals by comparing the linear stability results with an individual-based model that uses the same social interaction kernels. In some unstable regimes, we observe that the uniform state will evolve toward a radially symmetric attractor with a variable density. In other unstable regimes, we observe an incoherent swarming state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, I. (1982). A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fisher., 48, 1081–1088.

    Article  Google Scholar 

  • Bonabeau, E. (1999). Scaling in animal group-size distributions. Proc. Natl. Acad. Sci. USA, 96(8), 4472–4477.

    Article  Google Scholar 

  • Bonabeau, E., & Dagorn, L. (1995). Possible universality in the size distribution of fish schools. Phys. Rev. E, 51(6), R5220–R5223.

    Article  Google Scholar 

  • Bonnans, J.-F., Gilbert, J. C., Lemarechal, C., & Sagatizabal, C. A. (2006). Numerical optimization—Theoretical and Practical Aspects. New York: Springer.

    MATH  Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraula, G., & Bonabeau, E. (2003). Self-organization in biological systems. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Couzin, I., Krause, J., James, R., Ruxton, G., & Franks, N. (2002). Collective memory and spatial sorting in animal groups. J. Theor. Biol., 218, 1–11.

    Article  MathSciNet  Google Scholar 

  • Cucker, F., & Smale, S. (2007). Emergent behavior in flocks. IEEE Trans. Autom. Control, 52(5), 852–862.

    Article  MathSciNet  Google Scholar 

  • Eftimie, R., de Vries, G., Lewis, M.a., & Lutscher, F. (2007). Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull. Math. Biol., 69(5), 1537–1565.

    Article  MathSciNet  MATH  Google Scholar 

  • Giardina, I. (2008). Collective behavior in animal groups: theoretical models and empirical studies. HFSP J., 2(4), 205–219.

    Article  Google Scholar 

  • Huepe, C., & Aldana, M. (2004). Intermittency and clustering in a system of self-driven particles. Phys. Rev. Lett., 92, 168701.

    Article  Google Scholar 

  • Huth, A., & Wissel, C. (1992). The simulation of the movement of fish schools. J. Theor. Biol., 156, 365–385.

    Article  Google Scholar 

  • Kolpas, A., & Moehlis, J. (2009). Optimal switching between collective motion states for two agents. Appl. Math. Lett., 22(4), 4.

    Article  MathSciNet  Google Scholar 

  • Kolpas, A., Moehlis, J., & Kevrekidis, I. G. (2007). Coarse-grained analysis of stochasticity-induced switching between collective motion states. Proc. Natl. Acad. Sci. USA, 104(14), 5931–5935.

    Article  Google Scholar 

  • Levine, H., Rappel, W. J., & Cohen, I. (2001). Self-organization in systems of self-propelled particles. Phys. Rev. E, 63, 017101.

    Article  Google Scholar 

  • Li, H., Kolpas, A., Moehlis, J., & Petzold, L. (2008). Parallel simulation for a fish schooling model on a general-purpose graphics processing unit. Concurr. Comput. Pract. Exp. doi:10.1002/cpe.1330.

  • Lissaman, P. B. S., & Shollenberger, C. A. (1970). Formation flight of birds. Science, 168, 1003–1005.

    Article  Google Scholar 

  • Lukeman, R., Li, Y.-X., & Edelstein-Keshet, L. (2010). Inferring individual rules from collective behavior. Proc. Natl. Acad. Sci. USA, 107(28), 12576–12580.

    Article  Google Scholar 

  • Mogilner, A., & Edelstein-Keshet, L. (1999). A non-local model for a swarm. J. Math. Biol., 38(6), 534–570.

    Article  MathSciNet  MATH  Google Scholar 

  • Niwa, H.-S. (2003). Power-law versus exponential distributions of animal group sizes. J. Theor. Biol., 224(4), 451–457.

    Article  MathSciNet  Google Scholar 

  • Paley, D., Leonard, N., Sepulchre, R., Grünbaum, D., & Parrish, J. K. (2007a). Spatial patterns in the dynamics of engineered and biological networks. IEEE Control Syst. Mag., 27(4), 89–105.

    Article  Google Scholar 

  • Paley, D. A., Leonard, N. E., Sepulchre, R., Grübaum, D., & Parrish, J. K. (2007b). Oscillator models and collective motion. IEEE Control Syst. Mag., 89–105. doi:10.1109/MCS.2007.384123.

  • Parrish, J. K. (1999). Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science, 284(5411), 99–101.

    Article  Google Scholar 

  • Parrish, J. K., Viscido, S. V., & Grünbaum, D. (2002). Self-organized fish schools: an examination of emergent properties. Biol. Bull., 202, 296–305.

    Article  Google Scholar 

  • Partridge, B. (1982). The structure and function of fish schools. Sci. Am. doi:10.1038/scientificamerican0682-114.

  • Penrose, R., & Todd, J. A. (1956). On best approximate solutions of linear matrix equations. Math. Proc. Camb. Philos. Soc., 52(01), 17–19.

    Article  MATH  Google Scholar 

  • Raymond, J. R., & Evans, M. R. (2006). Flocking regimes in a simple lattice model. Phys. Rev. E, 73, 36112.

    Article  MathSciNet  Google Scholar 

  • Reuter, H., & Breckling, B. (1994). Self-organization of fish schools: an object-oriented model. Ecol. Model., 75, 147–159.

    Article  Google Scholar 

  • Sinclair, A. R. E., & Norton-Griffiths, M. (1979). Serengeti: dynamics of an ecosystem. Chicago: University of Chicago.

    Google Scholar 

  • Topaz, C., & Bertozzi, A. (2004). Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. doi:10.1137/S00361399034377424.

  • Topaz, C. M., Bertozzi, A. L., & Lewis, M. A. (2006). A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68(7), 1601–1623.

    Article  MathSciNet  Google Scholar 

  • Uvarov, B. P. (1928). Grasshoppers and locusts. London: Imperial Bureau of Entomology.

    Google Scholar 

  • Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75, 1226–1229.

    Article  Google Scholar 

  • Warburton, K., & Lazarus, J. (1991). Tendency-distance models of social cohesion in animal groups. J. Theor. Biol., 150, 473–488.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis F. Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J.M., Kolpas, A., Juchem Neto, J.P. et al. A Continuum Three-Zone Model for Swarms. Bull Math Biol 74, 536–561 (2012). https://doi.org/10.1007/s11538-011-9676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9676-y

Keywords

Navigation