Skip to main content
Log in

Synchrony and Asynchrony for Neuronal Dynamics Defined on Complex Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We describe and analyze a model for a stochastic pulse-coupled neuronal network with many sources of randomness: random external input, potential synaptic failure, and random connectivity topologies. We show that different classes of network topologies give rise to qualitatively different types of synchrony: uniform (Erdős–Rényi) and “small-world” networks give rise to synchronization phenomena similar to that in “all-to-all” networks (in which there is a sharp onset of synchrony as coupling is increased); in contrast, in “scale-free” networks the dependence of synchrony on coupling strength is smoother. Moreover, we show that in the uniform and small-world cases, the fine details of the network are not important in determining the synchronization properties; this depends only on the mean connectivity. In contrast, for scale-free networks, the dynamics are significantly affected by the fine details of the network; in particular, they are significantly affected by the local neighborhoods of the “hubs” in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, L. F., & van Vreeswijk, C. (1993). Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E, 48(2), 1483–1490.

    Article  Google Scholar 

  • Abrams, D. M., Mirollo, R., Strogatz, S. H., & Wiley, D. A. (2008). Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett., 101(8), 084103.

    Article  Google Scholar 

  • Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. Mod. Phys., 74(1), 47–97.

    Article  MATH  Google Scholar 

  • Alon, N., & Spencer, J.H. (2008). Wiley-Interscience series in discrete mathematics and optimization. The probabilistic method (3rd ed.). Hoboken: Wiley. With an appendix on the life and work of Paul Erdős.

    Book  MATH  Google Scholar 

  • Apfaltrer, F., Ly, C., & Tranchina, D. (2006). Population density methods for stochastic neurons with realistic synaptic kinetics: firing rate dynamics and fast computational methods. Network, Comput. Neural Syst., 17(4), 373–418.

    Article  Google Scholar 

  • Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., & Zhou, C. (2008). Synchronization in complex networks. Phys. Rep., 469(3), 93–153.

    Article  MathSciNet  Google Scholar 

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  Google Scholar 

  • Barahona, M., & Pecora, L. M. (2002). Synchronization in small-world systems. Phys. Rev. Lett., 89(5), 054101.

    Article  Google Scholar 

  • Bascompte, J. (2007). Networks in ecology. Basic Appl. Ecol., 8(6), 485–490.

    Article  Google Scholar 

  • Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. J. Neurosci., 23(35), 11167–11177.

    Google Scholar 

  • Beggs, J. M., & Plenz, D. (2004). Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci., 24(22), 5216–5229.

    Article  Google Scholar 

  • Bhan, A., Galas, D. J., & Dewey, T. G. (2002). A duplication growth model of gene expression networks. Bioinformatics, 18(11), 1486–1493.

    Article  Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: structure and dynamics. Phys. Rep., 424(4–5), 175–308.

    Article  MathSciNet  Google Scholar 

  • Bollobás, B. (2001). Cambridge studies in advanced mathematics: Vol. 73. Random graphs (2nd ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Bollobás, B., Borgs, C., Chayes, J., & Riordan, O. (2003). Directed scale-free graphs. In Proceedings of the fourteenth annual ACM-SIAM symposium on discrete algorithms (pp. 132–139), Baltimore, MD, 2003. New York: ACM.

    Google Scholar 

  • Bower, J. M., & Bolouri, H. (Eds.) (2001). Computational modeling of genetic and biochemical networks. Cambridge: MIT Press.

    Google Scholar 

  • Bressloff, P. C., & Coombes, S. (1998a). Traveling waves in a chain of pulse-coupled oscillators. Phys. Rev. Lett., 80(21), 4815–4818.

    Article  Google Scholar 

  • Bressloff, P. C., & Coombes, S. (1998b). Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett., 81(10), 2168–2171.

    Article  Google Scholar 

  • Bressloff, P. C., & Coombes, S. (1998c). Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett., 81(10), 2168–2171.

    Article  Google Scholar 

  • Bressloff, P. C., & Coombes, S. (2000). A dynamical theory of spike train transitions in networks of integrate-and-fire oscillators. SIAM J. Appl. Math., 60(3), 820–841 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  • Bressloff, P. C., Coombes, S., & de Souza, B. (1997). Dynamics of a ring of pulse-coupled oscillators: group-theoretic approach. Phys. Rev. Lett., 79(15), 2791–2794.

    Article  Google Scholar 

  • Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput., 11(7), 1621–1671.

    Article  Google Scholar 

  • Cai, D., Tao, L., Shelley, M., & McLaughlin, D. W. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc. Natl. Acad. Sci. USA, 101(20), 7757–7762.

    Article  Google Scholar 

  • Cai, D., Tao, L., Rangan, A. V., & McLaughlin, D. W. (2006). Kinetic theory for neuronal network dynamics. Commun. Math. Sci., 4(1), 97–127.

    MathSciNet  MATH  Google Scholar 

  • Campbell, S. R., Wang, D. L. L., & Jayaprakash, C. (1999). Synchrony and desynchrony in integrate-and-fire oscillators. Neural Comput., 11(7), 1595–1619.

    Article  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Dellnitz, M., Golubitsky, M., Hohmann, A., & Stewart, I. (1995). Spirals in scalar reaction-diffusion equations. Int. J. Bifurc. Chaos Appl. Sci. Eng., 5(6), 1487–1501.

    Article  MathSciNet  MATH  Google Scholar 

  • DeVille, R. E. L., & Peskin, C.S. (2008). Synchrony and asynchrony in a fully stochastic neural network. Bull. Math. Biol., 70(6), 1608–1633.

    Article  MathSciNet  MATH  Google Scholar 

  • DeVille, R. E. L., Peskin, C. S., & Spencer, J. H. (2010). Dynamics of stochastic neuronal networks and the connections to random graph theory. Math. Model. Nat. Process., 5(2), 26–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Dionne, B., Golubitsky, M., Silber, M., & Stewart, I. (1995). Time-periodic spatially periodic planforms in Euclidean equivariant partial differential equations. Philos. Trans. R. Soc. Lond., Ser. A, 352(1698), 125–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Dionne, B., Golubitsky, M., & Stewart, I. (1996a). Coupled cells with internal symmetry. I. Wreath products. Nonlinearity, 9(2), 559–574.

    Article  MathSciNet  MATH  Google Scholar 

  • Dionne, B., Golubitsky, M., & Stewart, I. (1996b). Coupled cells with internal symmetry. II. Direct products. Nonlinearity, 9(2), 575–599.

    Article  MathSciNet  MATH  Google Scholar 

  • Erdős, P., & Rényi, A. (1959). On random graphs. I. Publ. Math. (Debr.), 6, 290–297.

    Google Scholar 

  • Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Magy. Tud. Akad. Mat. Kut. Intéz. Közl., 5, 17–61.

    Google Scholar 

  • Eurich, C. W., Herrmann, J. M., & Ernst, U. A. (2002). Finite-size effects of avalanche dynamics. Phys. Rev. E, 66(6), 066137.

    Article  Google Scholar 

  • Field, M., Golubitsky, M., & Stewart, I. (1991). Bifurcations on hemispheres. J. Nonlinear Sci., 1(2), 201–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Gerstner, W., & van Hemmen, J. L. (1993). Coherence and incoherence in a globally-coupled ensemble of pulse-emitting units. Phys. Rev. Lett., 71(3), 312–315.

    Article  Google Scholar 

  • Goel, P., & Ermentrout, B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Phys. D, Nonlinear Phenom., 163(3–4), 191–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., & Stewart, I. (1984). Hopf bifurcation in the presence of symmetry. Bull. Am. Math. Soc., 11(2), 339–342.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., & Stewart, I. (1985). Hopf bifurcation in the presence of symmetry. Arch. Ration. Mech. Anal., 87(2), 107–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., & Stewart, I. (1986a). Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators. In Contemp. math.: Vol. 56. Multiparameter bifurcation theory, Arcata, Calif., 1985 (pp. 131–173). Providence: Am. Math. Soc.

    Chapter  Google Scholar 

  • Golubitsky, M., & Stewart, I. (1986b). Symmetry and stability in Taylor-Couette flow. SIAM J. Math. Anal., 17(2), 249–288.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., & Stewart, I. (1987). Generic bifurcation of Hamiltonian systems with symmetry. Physica D, 24(1–3), 391–405. With an appendix by Jerrold Marsden.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., & Stewart, I. (1999a). Symmetry and pattern formation in coupled cell networks. In IMA Math. Appl.: Vol. 115. Pattern formation in continuous and coupled systems (pp. 65–82), Minneapolis, MN, 1998. New York: Springer.

    Chapter  Google Scholar 

  • Golubitsky, M., & Stewart, I. (1999b). Symmetry and pattern formation in coupled cell networks. In IMA Vol. Math. Appl.: Vol. 115. Pattern formation in continuous and coupled systems (pp. 65–82), Minneapolis, MN, 1998. New York: Springer.

    Chapter  Google Scholar 

  • Golubitsky, M., & Stewart, I. (2002a). Progress in mathematics: Vol. 200. The symmetry perspective. Basel: Birkhäuser. From equilibrium to chaos in phase space and physical space.

    Book  MATH  Google Scholar 

  • Golubitsky, M., & Stewart, I. (2002b). Patterns of oscillation in coupled cell systems. In Geometry, mechanics, and dynamics (pp. 243–286). New York: Springer.

    Chapter  Google Scholar 

  • Golubitsky, M., & Stewart, I. (2002c). Progress in mathematics: Vol. 200. The symmetry perspective. Basel: Birkhäuser. From equilibrium to chaos in phase space and physical space.

    Book  MATH  Google Scholar 

  • Golubitsky, M., & Stewart, I. (2005). Synchrony versus symmetry in coupled cells. In EQUADIFF (pp. 13–24), World Sci. Publ., Hackensack.

    Google Scholar 

  • Golubitsky, M., & Stewart, I. (2006). Nonlinear dynamics of networks: the groupoid formalism. Bull. Am. Math. Soc., 43(3), 305–364.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Stewart, I., & Schaeffer, D. G. (1988). Applied mathematical sciences: Vol. 69. Singularities and groups in bifurcation theory, Vol. II. New York: Springer.

    Book  Google Scholar 

  • Golubitsky, M., Stewart, I., & Dionne, B. (1994). Coupled cells: wreath products and direct products. In NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.: Vol. 437. Dynamics, bifurcation and symmetry, Cargèse, 1993 (pp. 127–138). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Golubitsky, M., Stewart, I., Buono, P.-L., & Collins, J. J. (1998). A modular network for legged locomotion. Physica D, 115(1–2), 56–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Knobloch, E., & Stewart, I. (2000). Target patterns and spirals in planar reaction-diffusion systems. J. Nonlinear Sci., 10(3), 333–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Nicol, M., & Stewart, I. (2004a). Some curious phenomena in coupled cell networks. J. Nonlinear Sci., 14(2), 207–236.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Pivato, M., & Stewart, I. (2004b). Interior symmetry and local bifurcation in coupled cell networks. Dyn. Syst., 19(4), 389–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Stewart, I., & Török, A. (2005). Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Syst., 4(1), 78–100 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Josić, K., & Shea-Brown, E. (2006). Winding numbers and average frequencies in phase oscillator networks. J. Nonlinear Sci., 16(3), 201–231.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Shiau, L., & Stewart, I. (2007). Spatiotemporal symmetries in the disynaptic canal-neck projection. SIAM J. Appl. Math., 67(5), 1396–1417 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  • Hansel, D., Mato, G., & Meunier, C. (1993). Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E, 48(5), 3470–3477.

    Article  Google Scholar 

  • Haskell, E., Nykamp, D. Q., & Tranchina, D. (2001). Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size. Network, Comput. Neural Syst., 12(2), 141–174.

    MATH  Google Scholar 

  • Hong, H., Choi, M. Y., & Kim, B. J. (2002). Synchronization on small-world networks. Phys. Rev. E, 65(2), 026139.

    Article  Google Scholar 

  • Huygens, C. (1673). Horoloquium oscilatorium. Paris: Parisiis.

    Google Scholar 

  • Janson, S., Łuczak, T., & Rucinski, A. (2000). Wiley-Interscience series in discrete mathematics and optimization. Random graphs. New York: Wiley-Interscience.

    Book  MATH  Google Scholar 

  • Knight, B. W. (1972). Dynamics of encoding in a population of neurons. J. Gen. Physiol., 59(6), 734–766.

    Article  MathSciNet  Google Scholar 

  • Kuramoto, Y. (1984). Springer series in synergetics: Vol. 19. Chemical oscillations, waves, and turbulence. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Kuramoto, Y. (1991). Collective synchronization of pulse-coupled oscillators and excitable units. Physica D, 50(1), 15–30.

    MATH  Google Scholar 

  • Lago-Fernández, L. F., Huerta, R., Corbacho, F., & Sigüenza, J. A. (2000). Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Lett., 84(12), 2758–2761.

    Article  Google Scholar 

  • Leclerc, R. D. (2008). Survival of the sparsest: robust gene networks are parsimonious. Molecular Systems Biology, 4(213).

  • Levina, A., Herrmann, J. M., & Geisel, T. (2007). Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys., 3, 857–960.

    Article  Google Scholar 

  • Levina, A., Herrmann, J. M., & Geisel, T. (2009). Phase transitions towards criticality in a neural system with adaptive interactions. Phys. Rev. Lett., 102(11), 118110.

    Article  Google Scholar 

  • Lindner, B., García-Ojalvo, J., Neiman, A., & Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Phys. Rep., 392(6), 321–424.

    Article  Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824–827.

    Article  Google Scholar 

  • Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math., 50(6), 1645–1662.

    Article  MathSciNet  MATH  Google Scholar 

  • Mirollo, R. E., & Strogatz, S. H. (2005). The spectrum of the locked state for the Kuramoto model of coupled oscillators. Phys. D, Nonlinear Phenom., 205(1–4), 249–266. Synchronization and pattern formation in nonlinear systems: new developments and future perspectives.

    Article  MathSciNet  MATH  Google Scholar 

  • Mirollo, R., & Strogatz, S. H. (2007). The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci., 17, 309–347. 10.1007/s00332-006-0806-x.

    Article  MathSciNet  MATH  Google Scholar 

  • Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Rev., 45(2), 167–256 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  • Nishikawa, T., Motter, A. E., Lai, Y.-C., & Hoppensteadt, F. C. (2003). Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys. Rev. Lett., 91(1), 014101.

    Article  Google Scholar 

  • Peskin, C. S. (1975). Mathematical aspects of heart physiology. New York: Courant Institute of Mathematical Sciences New York University. Notes based on a course given at New York University during the year 1973/1974. See http://math.nyu.edu/faculty/peskin/heartnotes/index.html.

    MATH  Google Scholar 

  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: a universal concept in nonlinear sciences. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Schlitt, T., & Brazma, A. (2007). Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8(6).

  • Senn, W., & Urbanczik, R. (2000/2001). Similar nonleaky integrate-and-fire neurons with instantaneous couplings always synchronize. SIAM J. Appl. Math., 61(4), 1143–1155 (electronic).

    MathSciNet  Google Scholar 

  • Shmulevich, I., Dougherty, E. R., Kim, S., & Zhang, W. (2002). Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2), 261–274.

    Article  Google Scholar 

  • Sirovich, L. (2003). Dynamics of neuronal populations: eigenfunction theory; some solvable cases. Network, Comput. Neural Syst., 14(2), 249–272.

    Article  MathSciNet  Google Scholar 

  • Sirovich, L., Omrtag, A., & Knight, B. W. (2000). Dynamics of neuronal populations: the equilibrium solution. SIAM J. Appl. Math., 60(6), 2009–2028.

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart, I., Golubitsky, M., & Pivato, M. (2003). Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst., 2(4), 609–646 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  • Strogatz, S. (2003). Sync: the emerging science of spontaneous order. New York: Hyperion.

    Google Scholar 

  • Terman, D., Kopell, N., & Bose, A. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D, 117(1–4), 241–275.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsodyks, M., Mitkov, I., & Sompolinsky, H. (1993). Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions. Phys. Rev. Lett., 71(8), 1280–1283.

    Article  Google Scholar 

  • van Vreeswijk, C., Abbott, L., & Ermentrout, G. (1994). When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci., 313–322.

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  • Wilkinson, D. J. (2006). Stochastic modelling for systems biology. Chapman & Hall/CRC mathematical and computational biology series. Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Winfree, A. T. (2001). The geometry of biological time. Interdisciplinary applied mathematics (2nd ed., Vol. 12). New York: Springer.

    MATH  Google Scholar 

  • Zhao, F., Yang, H., & Wang, B. (2005). Scaling invariance in spectra of complex networks: a diffusion factorial moment approach. Phys. Rev. E, 72(4), 046119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Lee DeVille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeVille, R.E.L., Peskin, C.S. Synchrony and Asynchrony for Neuronal Dynamics Defined on Complex Networks. Bull Math Biol 74, 769–802 (2012). https://doi.org/10.1007/s11538-011-9674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9674-0

Keywords

Navigation