Skip to main content

Advertisement

Log in

Sampling HIV Intrahost Genealogies Based on a Model of Acute Stage CTL Response

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cytotoxic T lymphocytes (CTLs) play an important role in the immune response to HIV during the acute stage of infection, but the effect of CTLs on HIV intrahost genetic diversity is poorly understood. We introduce a model of CTL attack during the acute stage. Assuming this model, we develop a method to sample HIV intrahost genealogies. Using our sampling approach, we characterize the evolutionary forces that shape HIV genealogies. In particular, we show that early mutation events can have significant impact on HIV genealogies and that certain types of CTL attack are best at controlling HIV genetic diversity. Our sampler represents a first step toward using HIV genetic data to infer properties of CTL attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achaz, G., et al. (2004). A robust measure of hiv-1 population turnover within chronically infected individuals. Mol. Biol. Evol., 21(10), 1902–1912.

    Article  Google Scholar 

  • Antia, R., et al. (2003). Models of cd8 responses: 1. what is the antigen-independent proliferation program. Nat. Rev., 221, 585–598.

    MathSciNet  Google Scholar 

  • Athreya, K. B., & Ney, P. E. (1972). Branching processes. Berlin: Springer.

    MATH  Google Scholar 

  • Barton, N. H., et al. (2004). Coalescence in a random environment. Ann. Appl. Probab., 14, 754–785.

    Article  MathSciNet  MATH  Google Scholar 

  • Borrow, P. H., et al. (1994). Virus-specific cd8+ cytotoxic t-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol., 68, 6103–6110.

    Google Scholar 

  • Carrington, M., & O’Brien, S. J. (2003). The influence of hla genotype on aids. AIDS Annu. Rev. Med., 54, 535–551.

    Article  Google Scholar 

  • Drummond, A. J., & Rambaut, A. (2007). Beast: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol., 7, 214.

    Article  Google Scholar 

  • Durrett, R. (2002). Probability models for DNA sequence evolution. Berlin: Springer.

    MATH  Google Scholar 

  • Durrett, R., & Schweinsberg, J. (2004). Approximating selective sweeps. Theor. Popul. Biol., 66, 129–138.

    Article  MATH  Google Scholar 

  • Goonetilleke, N., et al. (2009). The first t cell response to transmitted/founder virus contributes to the control of acute viremia in hiv-1 infection. J. Exp. Med., 206(6), 1253–1272.

    Article  Google Scholar 

  • Hermisson, J., & Pennings, P. S. (2005). Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics, 169, 2335–2352.

    Article  Google Scholar 

  • Kaplan, N. L., et al. (1988). The coalescent process in models with selection. Genetics, 120, 819–829.

    Google Scholar 

  • Kaplan, N. L., et al. (1989). The hitchhiking effect revisited. Genetics, 123, 887–899.

    Google Scholar 

  • Keele, B. F., et al. (2008). Identification and characterization of transmitted and early founder virus envelopes in primary hiv-1 infection. PNAS, 105(21), 7552–7557.

    Article  Google Scholar 

  • Kelleher, A. D., et al. (2001). Clustered mutations in hiv-1 gag are consistently required for escape from hla-b27-restricted cytotoxic t lymphocyte responses. J. Exp. Med., 193, 375–386.

    Article  Google Scholar 

  • Kepler, T. B., & Oprea, M. (2001). Improved inference of mutation rates: I. an integral representation for the Luria-Delbruck distribution. Theor. Popul. Biol., 59, 41–48.

    Article  MATH  Google Scholar 

  • Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl., 13, 235–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Koup, R. A., et al. (1994). Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol., 68, 4650–4655.

    Google Scholar 

  • Kuhner, M. K. (2006). Lamarc 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics, 22(6), 768–770.

    Article  Google Scholar 

  • Leigh-Brown, A. J. (1997). Analysis of hiv-1 env gene sequences reveals evidence for a low effective number in the viral population. PNAS, 94, 1862–1865.

    Article  Google Scholar 

  • Lemey, P., et al. (2007). Synonymous substitution rates predict hivdisease progression as a result of underlying replication dynamics. PLoS Comput. Biol., 3, 282–292.

    Article  MathSciNet  Google Scholar 

  • Lemey, P., Salemi, M., & Vandamme, A.-M. (2009). The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mansky, L. M., & Temin, H. M. (1995). Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol., 69, 5087–5094.

    Google Scholar 

  • Markowitz, M., et al. (2003). A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and t-cell decay in vivo. J. Virol., 77, 5037–5038.

    Article  Google Scholar 

  • Merrill, S. J. (2005). The stochastic dance of early hiv infection. J. Comput. Appl. Math., 184, 242–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Mohle, M. (2005). Convergence results for compound Poisson distributions and applications to the standard Luria-Delbruck distribution. J. Appl. Probab., 42(3), 620–631.

    Article  MathSciNet  Google Scholar 

  • Nolan, J. P. (2011). Stable distributions—models for heavy tailed data. Boston: Birkhauser. In progress, Chapter 1 online at academic2.american.edu/~jpnolan.

    Google Scholar 

  • Nowak, M. A. (2006). Evolutionary dynamics: exploring the equations of life. Harvard: Harvard University Press.

    MATH  Google Scholar 

  • Nowak, M. A., & May, R. M. (2000). Virus dynamics: mathematical principles of immunology and virology. London: Oxford University Press.

    MATH  Google Scholar 

  • Perelson, A. S. (1996). Hiv-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 271, 1582–1586.

    Article  Google Scholar 

  • Perelson, A. S. (2002). Modeling viral and immune system dynamics. Nat. Rev., 2, 28–36.

    Google Scholar 

  • Rouzine, I. M., et al. (2001). Transition between stochastic evolution and deterministic evolution in the presence of selection: general theory and application to virology. Microbiol. Mol. Biol. Rev., 65(1), 151–185.

    Article  Google Scholar 

  • Schmitz, J. E., et al. (1999). Control of viremia in simian immunodeficiency virus infection by cd8+ lymphocytes. Science, 283, 857.

    Article  Google Scholar 

  • Slatkin, M., & Hudson, R. R. (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555–562.

    Google Scholar 

  • Stafford, M. A., et al. (2000). Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol., 203, 285–301.

    Article  Google Scholar 

  • Weir, B. S. (1996). Genetic data analysis II. Sunderland: Sinauer.

    Google Scholar 

  • Wick, D., & Self, S. G. (2000). Early HIV infection in vivo: branching process model for studying time of immune responses and drug therapy. Math. Biosci., 165, 115–134.

    Article  MATH  Google Scholar 

  • Zheng, Q. (1999). Progress of a half century in the study of the Luria-Delbruck distribution. Math. Biosci., 162, 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng, Q. (2008). On Bartlett’s formulation of the Luria-Delbruck mutation model. Math. Biosci., 215, 48–54.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivan Leviyang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leviyang, S. Sampling HIV Intrahost Genealogies Based on a Model of Acute Stage CTL Response. Bull Math Biol 74, 509–535 (2012). https://doi.org/10.1007/s11538-011-9670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9670-4

Keywords

Navigation