Skip to main content

Advertisement

Log in

MARS Approach for Global Sensitivity Analysis of Differential Equation Models with Applications to Dynamics of Influenza Infection

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baccam, P., Beauchemin, C., Macken, C. A., Hayden, F. G., & Perelson, A. S. (2006). Kinetics of influenza A virus infection in humans. J. Virol., 80, 7590–7599.

    Article  Google Scholar 

  • Beauchemin, C., Samuel, J., & Tuszynski, J. (2005). A simple cellular automaton model for influenza A viral infections. J. Theor. Biol., 232, 223–234.

    Article  MathSciNet  Google Scholar 

  • Blower, S., & Dowlatabadi, H. (1994). Sensitivity and Uncertainty Analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev., 64, 229–243.

    Google Scholar 

  • Bocharov, G. A., & Romanyukha, A. A. (1994). Mathematical model of antiviral immune response III. Influenza A virus infection. J. Theor. Biol., 167, 323–360.

    Article  Google Scholar 

  • CDC report (2010). Estimates of deaths associated with seasonal influenza—United States, 1976–2007.

  • Chen, W., Jin, R., & Sudjianto, A. (2005). Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty. J. Mech. Des., 127, 875–886.

    Article  Google Scholar 

  • Friedman, J. H. (1991). Multivariate adaptive regression splines. Ann. Stat., 19, 1–67.

    Article  MATH  Google Scholar 

  • Hancioglu, B., Swigon, D., & Clermont, G. (2007). A dynamical model of human immune response to influenza A virus infection. J. Theor. Biol., 246, 70–86.

    Article  MathSciNet  Google Scholar 

  • Helton, J., Johnson, J., Sallaberry, C., & Storlie, C. (2006). Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf., 91, 1175–1209.

    Article  Google Scholar 

  • Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf., 81, 23–69.

    Article  Google Scholar 

  • Hoare, A., Regan, D., & Wilson, D. (2008). Sampling and sensitivity analyses tools (SaSAT) for computational modelling. Theor. Biol. Med. Model., 5, 4.

    Article  Google Scholar 

  • Homma, T., & Saltelli, A. (1996). Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf., 52, 1–17.

    Article  Google Scholar 

  • Lee, H. Y., Topham, D. J., Park, S. Y., Hollenbaugh, J., Treanor, J., Mosmann, T. R., Jin, X., Ward, B. M., Miao, H., Holden-Wiltse, J., Perelson, A. S., Zand, M., & Wu, H. (2009). Simulation and prediction of the adaptive immune response to influenza A virus infection. J. Virol., 83, 7151–7165.

    Article  Google Scholar 

  • Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A methodology for performing global uncertainty and sensitivity analysis in system biology. J. Theor. Biol., 254, 178–196.

    Article  Google Scholar 

  • McKay, M. (1995). Evaluating prediction uncertainty (Technical Report). Los Alamos National Lab., NM (United States).

  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Miao, H., Hollenbaugh, J., Zand, M., Holden-Wiltse, J., Mosmann, T., Perelson, A., Wu, H., & Topham, D. (2010). Quantifying the early immune response and adaptive immune response kinetics in mice infected by influenza A virus. J. Virol., 84, 6687–6698.

    Article  Google Scholar 

  • Mohler, L., Flockerzi, D., Sann, H., & Reichl, U. (2005). Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol. Bioeng., 90, 46–58.

    Article  Google Scholar 

  • Milborrow, S. (2009). Earth: multivariate adaptive regression spline models. R package version 2.3-5.

  • R Development Core Team (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

    Google Scholar 

  • Saltelli, A., Tarantola, S., & Chan, K. P. S. (1999). A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41, 39–56.

    Article  Google Scholar 

  • Saltelli, A., Chan, K., & Scott, E. (2000). Sensitivity analysis. Wiley series in probability and statistics.

    MATH  Google Scholar 

  • Sobol’, I. (1993). Sensitivity analysis for non-linear mathematical models. Math. Model. Comput. Exp., 1, 407–414.

    MathSciNet  Google Scholar 

  • Storlie, C. B., & Helton, J. C. (2008a). Multiple predictor smoothing methods for sensitivity analysis: Description of techniques. Reliab. Eng. Syst. Saf., 93, 28–54.

    Article  Google Scholar 

  • Storlie, C. B., & Helton, J. C. (2008b). Multiple predictor smoothing methods for sensitivity analysis: Example results. Reliab. Eng. Syst. Saf., 93, 55–77.

    Article  Google Scholar 

  • Storlie, C. B., Swiler, L. P., Helton, J. C., & Sallaberry, C. J. (2009). Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliab. Eng. Syst. Saf., 94, 1735–1763.

    Article  Google Scholar 

  • Zhang, H. (1997). Multivariate adaptive splines for analysis of longitudinal data. J. Comput. Graph. Stat., 6, 74–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hulin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Wu, H. MARS Approach for Global Sensitivity Analysis of Differential Equation Models with Applications to Dynamics of Influenza Infection. Bull Math Biol 74, 73–90 (2012). https://doi.org/10.1007/s11538-011-9664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9664-2

Keywords

Navigation