Skip to main content
Log in

An Algebraic Approach to Signaling Cascades with n Layers

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Posttranslational modification of proteins is key in transmission of signals in cells. Many signaling pathways contain several layers of modification cycles that mediate and change the signal through the pathway. Here, we study a simple signaling cascade consisting of n layers of modification cycles such that the modified protein of one layer acts as modifier in the next layer. Assuming mass-action kinetics and taking the formation of intermediate complexes into account, we show that the steady states are solutions to a polynomial in one variable and in fact that there is exactly one steady state for any given total amounts of substrates and enzymes.

We demonstrate that many steady-state concentrations are related through rational functions that can be found recursively. For example, stimulus-response curves arise as inverse functions to explicit rational functions. We show that the stimulus-response curves of the modified substrates are shifted to the left as we move down the cascade. Further, our approach allows us to study enzyme competition, sequestration, and how the steady state changes in response to changes in the total amount of substrates.

Our approach is essentially algebraic and follows recent trends in the study of posttranslational modification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angeli, D., & Sontag, E. D. (2008). Translation-invariant monotone systems and a global convergence result for enzymatic futile cycles. Nonlinear Anal., Real World Appl., 9(1), 128–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Bardsley, W. G., & Childs, R. E. (1975). Sigmoid curves, non-linear double-reciprocal plots and allosterism. Biochem. J., 149, 313–328.

    Google Scholar 

  • Bluthgen, N., Bruggeman, F. J., Legewie, S., Herzel, H., Westerhoff, H. V., & Kholodenko, B. N. (2006). Effects of sequestration on signal transduction cascades. FEBS J., 273, 895–906.

    Article  Google Scholar 

  • Chaves, M., Sontag, E. D., & Dinerstein, R. J. (2004). Optimal length and signal amplification in weakly activated signal transduction cascades. J. Phys. Chem. B, 108(39), 15311–15320.

    Article  Google Scholar 

  • Conradi, C., Flockerzi, D., & Raisch, J. (2008). Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosci., 211, 105–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Cooper, G. M., & Hausman, R. E. (2009). The cell (5th ed.). Washington: ASM Press.

    Google Scholar 

  • Craciun, G., & Feinberg, M. (2005). Multiple equilibria in complex chemical reaction networks. I. The injectivity property. SIAM J. Appl. Math., 65(5), 1526–1546 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  • Craciun, G., & Feinberg, M. (2006). Multiple equilibria in complex chemical reaction networks. II. The species-reaction graph. SIAM J. Appl. Math., 66(4), 1321–1338 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  • Craciun, G., & Feinberg, M. (2010). Multiple equilibria in complex chemical reaction networks: semiopen mass action systems. SIAM J. Appl. Math., 70(6), 1859–1877.

    Article  MathSciNet  MATH  Google Scholar 

  • Feliu, E., Andersen, L., Knudsen, M., & Wiuf, C. (2010). A general mathematical framework suitable for studying signaling cascades (submitted).

  • Ferrell, J. E., & Xiong, W. (2001). Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. Chaos, 11, 227–236.

    Article  MATH  Google Scholar 

  • Goldbeter, A., & Koshland, D. E. (1981). An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA, 78, 6840–6844.

    Article  MathSciNet  Google Scholar 

  • Goldbeter, A., & Koshland, D. E. (1984). Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. J. Biol. Chem., 259, 14441–14447.

    Google Scholar 

  • Gunawardena, J. (2005). Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc. Natl. Acad. Sci. USA, 102, 14617–14622.

    Article  Google Scholar 

  • Gunawardena, J. (2007). Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants. Biophys. J., 93, 3828–3834.

    Article  Google Scholar 

  • Gunawardena, J. (2010). Biological systems theory. Science, 328, 581–582.

    Article  Google Scholar 

  • Heinrich, R., Neel, B. G., & Rapoport, T. A. (2002). Mathematical models of protein kinase signal transduction. Mol. Cell, 9, 957–970.

    Article  Google Scholar 

  • Huang, C. Y., & Ferrell, J. E. (1996). Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA, 93, 10078–10083.

    Article  Google Scholar 

  • Hurwitz, A. (1996). Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. In Internat. ser. numer. math.: Vol. 121. Stability theory (pp. 239–249), Ascona, 1995. Basel: Birkhäuser. Reprinted from Math. Ann., 44, 273–284 (1895). [JFM 26.0119.03].

    Google Scholar 

  • Kholodenko, B. N., Hoek, J. B., Westerhoff, H. V., & Brown, G. C. (1997). Quantification of information transfer via cellular signal transduction pathways. FEBS Lett., 414, 430–434.

    Article  Google Scholar 

  • Lang, S. (2002). Graduate texts in mathematics: Vol. 211. Algebra (3rd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Legewie, S., Bluthgen, N., Schafer, R., & Herzel, H. (2005). Ultrasensitization: switch-like regulation of cellular signaling by transcriptional induction. PLoS Comput. Biol., 1, e54.

    Article  Google Scholar 

  • MacFarlane, R. G. (1964). An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature, 202, 498–499.

    Article  Google Scholar 

  • Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164, 353–359.

    Article  Google Scholar 

  • Meinke, M. H., Bishop, J. S., & Edstrom, R. D. (1986). Zero-order ultrasensitivity in the regulation of glycogen phosphorylase. Proc. Natl. Acad. Sci. USA, 83, 2865–2868.

    Article  Google Scholar 

  • Ortega, F., Garces, J. L., Mas, F., Kholodenko, B. N., & Cascante, M. (2006). Bistability from double phosphorylation in signal transduction. Kinetic and structural requirements. FEBS J., 273, 3915–3926.

    Article  Google Scholar 

  • Qiao, L., Nachbar, R. B., Kevrekidis, I. G., & Shvartsman, S. Y. (2007). Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput. Biol., 3, 1819–1826.

    Article  MathSciNet  Google Scholar 

  • Qu, Z., & Vondriska, T. M. (2009). The effects of cascade length, kinetics and feedback loops on biological signal transduction dynamics in a simplified cascade model. Phys. Biol., 6, 016007.

    Article  Google Scholar 

  • Racz, E., & Slepchenko, B. M. (2008). On sensitivity amplification in intracellular signaling cascades. Phys. Biol., 5, 036004.

    Article  Google Scholar 

  • Salazar, C., & Höfer, T. (2006). Kinetic models of phosphorylation cycles: a systematic approach using the rapid-equilibrium approximation for protein-protein interactions. Biosystems, 83, 195–206.

    Article  Google Scholar 

  • Salazar, C., & Höfer, T. (2009). Multisite protein phosphorylation—from molecular mechanisms to kinetic models. FEBS J., 276, 3177–3198.

    Article  Google Scholar 

  • Shinar, G., & Feinberg, M. (2010). Structural sources of robustness in biochemical reaction networks. Science, 327, 1389–1391.

    Article  Google Scholar 

  • Thomson, M., & Gunawardena, J. (2009a). The rational parameterization theorem for multisite post-translational modification systems. J. Theor. Biol., 261, 626–636.

    Article  Google Scholar 

  • Thomson, M., & Gunawardena, J. (2009b). Unlimited multistability in multisite phosphorylation systems. Nature, 460, 274–277.

    Article  Google Scholar 

  • Ventura, A. C., Sepulchre, J. A., & Merajver, S. D. (2008). A hidden feedback in signaling cascades is revealed. PLoS Comput. Biol., 4, e1000,041.

    Article  MathSciNet  Google Scholar 

  • Wang, L., & Sontag, E. D. (2008). On the number of steady states in a multiple futile cycle. J. Math. Biol., 57, 29–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 21, 319–346.

    Article  Google Scholar 

  • Wiggins, S. (2003). Texts in applied mathematics: Vol. 2. Introduction to applied nonlinear dynamical systems and chaos (2nd ed.). New York: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Wiuf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feliu, E., Knudsen, M., Andersen, L.N. et al. An Algebraic Approach to Signaling Cascades with n Layers. Bull Math Biol 74, 45–72 (2012). https://doi.org/10.1007/s11538-011-9658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9658-0

Keywords

Navigation