Skip to main content
Log in

Homogenization of Large-Scale Movement Models in Ecology

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10–100 m) habitat variability on large scale (10–100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andro, D. A., Karieva, P. M., Levin, S. A., & Okubo, A. (1990). Spread of invading organisms. Landsc. Ecol., 4, 177–188.

    Article  Google Scholar 

  • Baeten, L. A., Powers, B. E., Jewell, J. E., Spraker, T. R., & Miller, M. W. (2007). A natural case of chronic wasting disease in a free-ranging moose (Alces alces shirasi). J. Wildl. Dis., 43, 309–314.

    Google Scholar 

  • Demaret, L., Eberl, H. J., Efendiev, M. A., & Maloszewski, P. (2009). A simple bioclogging model that accounts for spatial spread of bacteria. Electron. J. Differ. Equ., 17, 51–69.

    MathSciNet  Google Scholar 

  • Dewhirst, S., & Lutscher, F. (2009). Dispersal in heterogeneous habitats: thresholds, spatial scales, and approximate rates of spread. Ecology, 90, 1338–1345.

    Article  Google Scholar 

  • Fisher, R. A. (1937). The wave of advance of advantageous genes. Ann. Eugenics, 7, 355–369.

    Article  Google Scholar 

  • Fitzgibbon, W. E., Langlais, M., & Morgan, J. J. (2001). A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous spatial domain. SIAM J. Math. Anal., 33, 570–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Holmes, E. E., Lewis, M. A., Banks, J. E., & Veit, R. R. (1994). Partial differential equations in ecology: spatial interactions and population dynamics. Ecology, 75, 17–29.

    Article  Google Scholar 

  • Holmes, M. H. (1995). Introduction to perturbation methods. New York: Springer.

    MATH  Google Scholar 

  • Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J. N., & Wickham, J. (2007) Completion of the 2001 National land cover database for the Conterminous United States. Photogramm. Eng Remote Sens., 73, 337–341.

    Google Scholar 

  • Hooten, M. B., Garlick, M. J., & Powell, J. A. (2009). Advantageous change of support in inverse implementations of statistical differential equation models. In JSM proceedings, section on Bayesian statistical science (pp. 1847–1857). Alexandria: American Statistical Association.

    Google Scholar 

  • Johnson, C. J., Pederson, J. A., Chappell, R. J., McKenzie, D., & Aiken, J. M. (2006). Oral transmissibility of prion disease is enhanced by binding to soil particles. Pub. Library Sci. Pathogens, 3, 874–881.

    Google Scholar 

  • Kallen, A., Arcui, P., & Murray, J. D. (1985). A simple model for spatial spread and control of rabies. J. Theor. Biol., 116, 377–393.

    Article  Google Scholar 

  • Kareiva, P., & Odell, G. (1987). Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am. Nat., 130, 233–270.

    Article  Google Scholar 

  • Kierstead, H., & Slobodkin, L. B. (1953). The size of water masses containing plankton bloom. J. Mar. Res., 12, 141–147.

    Google Scholar 

  • Kinezaki, N., Kawasaki, K., Takasu, F., & Shigesada, N. (2003). Modeling biological invasions into periodically fragmented environments. Theor. Popul. Biol., 64, 291–302.

    Article  MATH  Google Scholar 

  • Lewis, M. A., Hillen, T., & Lutscher, F. (2005). Spatial dynamics in ecology. IAS/Park City Math. Ser., 15, 3–21.

    Google Scholar 

  • Logan, D. J. (2006). Applied mathematics (3rd ed.). Hoboken: Wiley-Interscience.

    MATH  Google Scholar 

  • McFarlane, L. R. (2007). Breeding behavior and space use of male and female mule deer: An examination of potential risk differences for chronic wasting disease infection. Master’s thesis, Utah State University.

  • Meade, D. B., & Milner, F. A. (1992). Applied mathematics monographs: Vol. 3. SIR epidemic models with directed diffusion.

    Google Scholar 

  • Miller, M. W., Williams, E. S., Hobbs, N. T., & Wolfe, L. L. (2004). Environmental sources of prion transmission in mule deer. Emerg. Infect. Dis., 10, 1003–1006.

    Google Scholar 

  • Miller, M. W., Hobbs, N. T., & Tavener, S. J. (2006). Dynamics of prion disease transmission in mule deer. Ecol. Appl., 16, 2208–2214.

    Article  Google Scholar 

  • Miller, M. W., Swanson, H. M., Wolfe, L. L., Quartarone, F. G., Huwer, S. L., Southwick, C. H., & Lukacs, P. M. (2008). Lions, prions and deer demise. Public Libr. Sci. ONE, 3, 1–7.

    Google Scholar 

  • Mitchell, A. R., & Griffiths, D. F. (1980). The finite difference method in partial differential equations. Norwich: Wiley.

    MATH  Google Scholar 

  • Murray, J. D. (1980). On pattern formation mechanisms for Lepidopteran wing patterns and mammalian coat markings. Philos. Trans. R. Soc. Ser. B, 295, 473–496.

    Article  Google Scholar 

  • Okubo, A. (1980). Diffusion and ecological problems: mathematical models. New York: Springer.

    MATH  Google Scholar 

  • Powell, J. A., & Zimmermann, N. E. (2004). Multiscale analysis of active seed dispersal contributes to resolving Reid’s paradox. Ecology, 85, 490–506.

    Article  Google Scholar 

  • Risken, H. (1986). The Fokker–Planck equation: methods of solutions and applications. Berlin: Springer.

  • Shigesada, N., & Kawasaki, K. (1997). Biological invasions: theory and practice. Oxford: Oxford University Press.

    Google Scholar 

  • Shellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196–218.

    MathSciNet  Google Scholar 

  • Swindale, N. W. (1980). A model for the formation of ocular dominance stripes. Proc. R. Soc. Lond. Ser. B, 208, 243–264.

    Article  Google Scholar 

  • Turchin, P. (1998). Quantitative analysis of movement. Sunderland: Sinauer.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B, 237, 37–72.

    Article  Google Scholar 

  • U.D.W.R. (2010). Utah Division of Wildlife Resources Wildlife News: Ideal weather could mean a few more deer. http://wildlife.utah.gov.

  • Williams, E. S. (2005). Chronic wasting disease. Vet. Pathol., 42, 530–549.

    Article  Google Scholar 

  • With, K. A. (2002). The Landscape ecology of invasive spread. Conserv. Biol., 16, 1192–1203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha J. Garlick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garlick, M.J., Powell, J.A., Hooten, M.B. et al. Homogenization of Large-Scale Movement Models in Ecology. Bull Math Biol 73, 2088–2108 (2011). https://doi.org/10.1007/s11538-010-9612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9612-6

Keywords

Navigation