Skip to main content
Log in

Local Replicator Dynamics: A Simple Link Between Deterministic and Stochastic Models of Evolutionary Game Theory

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Classical replicator dynamics assumes that individuals play their games and adopt new strategies on a global level: Each player interacts with a representative sample of the population and if a strategy yields a payoff above the average, then it is expected to spread. In this article, we connect evolutionary models for infinite and finite populations: While the population itself is infinite, interactions and reproduction occurs in random groups of size N. Surprisingly, the resulting dynamics simplifies to the traditional replicator system with a slightly modified payoff matrix. The qualitative results, however, mirror the findings for finite populations, in which strategies are selected according to a probabilistic Moran process. In particular, we derive a one-third law that holds for any population size. In this way, we show that the deterministic replicator equation in an infinite population can be used to study the Moran process in a finite population and vice versa. We apply the results to three examples to shed light on the evolution of cooperation in the iterated prisoner’s dilemma, on risk aversion in coordination games and on the maintenance of dominated strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, G., & Kuperman, M. (2001). Social games in a social network. Phys. Rev. E, 63, 030901.

    Article  Google Scholar 

  • Antal, T., Traulsen, A., Ohtsuki, H., Tarnita, C. E., & Nowak, M. A. (2009). Mutation-selection equilibrium in games with multiple strategies. J. Theor. Biol., 258, 614–622.

    Article  Google Scholar 

  • Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.

    Google Scholar 

  • Battalio, R., Samuelson, L., & Van Huyck, J. (2001). Optimization incentives and coordination failure in laboratory stag hunt games. Econometrica, 69, 749–764.

    Article  MathSciNet  MATH  Google Scholar 

  • Bomze, I., & Pawlowitsch, C. (2008). One-third rules with equality: Second-order evolutionary stability conditions in finite populations. J. Theor. Biol., 254, 616–620.

    Article  Google Scholar 

  • Boyd, R., Gintis, H., & Bowles, S. (2010). Coordinated punishment of defectors sustains cooperation and can proliferate when rare. Science, 328, 617–620.

    Article  MathSciNet  Google Scholar 

  • Brandt, H., Hauert, C., & Sigmund, K. (2006). Punishing and abstaining for public goods. Proc. Natl. Acad. Sci. USA, 103, 495–497.

    Article  Google Scholar 

  • Cooper, R. W., DeJong, D. V., Forsythe, R., & Ross, T. W. (1990). Selection criteria in coordination games: Some experimental results. Am. Econ. Rev., 80, 218–233.

    Google Scholar 

  • Dieckmann, U., Heino, M., & Parvinen, K. (2006). The adaptive dynamics of function-valued traits. J. Theor. Biol., 241, 370–389.

    Article  MathSciNet  Google Scholar 

  • Dugatkin, L. A., & Reeve, H. K. (Eds.) (1998). Game theory and animal behaviour. Oxford: Oxford University Press.

    Google Scholar 

  • Durrett, R., & Levin, S. A. (1994). Stochastic spatial models: A user’s guide to ecological applications. Philos. Trans. R. Soc. Lond. B, Biol. Sci., 343, 329–350.

    Article  Google Scholar 

  • Falster, D. S., & Westoby, M. (2003). Plant height and evolutionary games. Trends Ecol. Evol., 18, 337–343.

    Article  Google Scholar 

  • Fehr, E., & Gächter, S. (2000). Cooperation and punishment in public goods experiments. Am. Econ. Rev., 90, 980–994.

    Article  Google Scholar 

  • Friedman, D. (1996). Equilibrium in evolutionary games: Some experimental results. Econ. J., 106, 1–25.

    Article  Google Scholar 

  • Fudenberg, D., & Imhof, L. A. (2006). Imitation processes with small mutations. J. Econ. Theory, 131, 252–262.

    Article  MathSciNet  Google Scholar 

  • Fudenberg, D., & Tirole, J. (1991). Game theory. Cambridge: MIT Press.

    Google Scholar 

  • Geritz, S., Kisdi, E., Meszéna, G., & Metz, J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57.

    Article  Google Scholar 

  • Gintis, H., Bowles, S., Boyd, R. T., & Fehr, E. (Eds.) (2005). Moral sentiments and material interests—the foundations of cooperation in economic life. Cambridge: MIT Press.

    Google Scholar 

  • Gokhale, C., & Traulsen, A. (2010). Evolutionary games in the multiverse. Proc. Natl. Acad. Sci. USA, 107, 5500–5504.

    Article  Google Scholar 

  • Harsanyi, J., & Selten, R. (1988). A general theory of equilibrium selection in games. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Hauert, C., & Doebeli, M. (2004). Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature, 428, 643–646.

    Article  Google Scholar 

  • Helbing, D., & Yu, W. (2009). The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Natl. Acad. Sci. USA, 106, 3680–3685.

    Article  Google Scholar 

  • Hilbe, C., & Sigmund, K. (2010). Incentives and opportunism: From the carrot to the stick. Proc. R. Soc. Lond. B, Biol. Sci., 277, 2427–2433.

    Article  Google Scholar 

  • Hofbauer, J. (1981). On the occurrence of limit cycles in the Volterra-Lotka equation. Nonlinear Anal., 5, 1003–1007.

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer, J., & Sigmund, K. (2003). Evolutionary game dynamics. Bull. Am. Math. Soc., 40, 479–519.

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer, J., & Sigmund, K. (1994). Adaptive dynamics and evolutionary stability. Appl. Math. Lett., 7, 65–70.

    Article  MATH  Google Scholar 

  • Hofbauer, J., & Sigmund, K. (1998). Evolutionary games and population dynamics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. Am. Econ. Rev., 92, 1644–1655.

    Article  Google Scholar 

  • Imhof, L. A., Fudenberg, D., & Nowak, M. A. (2005). Evolutionary cycles of cooperation and defection. Proc. Natl. Acad. Sci. USA, 102, 10797–10800.

    Article  Google Scholar 

  • Kahnemann, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.

    Article  Google Scholar 

  • Lehmann, L., Keller, L., & Sumpter, D. (2007). The evolution of helping and harming on graphs: The return of inclusive fitness effect. J. Evol. Biol., 20, 2284–2295.

    Article  Google Scholar 

  • Lessard, S. (2005). Long-term stability from fixation probabilities in finite populations: New perspectives for ESS theory. Theor. Popul. Biol., 68, 19–27.

    Article  MATH  Google Scholar 

  • Lessard, S., & Ladret, V. (2007). The probability of fixation of a single mutant in an exchangeable selection model. J. Math. Biol., 54, 721–744.

    Article  MathSciNet  MATH  Google Scholar 

  • Lieberman, E., Hauert, C., & Nowak, M. A. (2005). Evolutionary dynamics on graphs. Nature, 433, 312–316.

    Article  Google Scholar 

  • Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Maynard Smith, J. (1988). Can a mixed strategy be stable in a finite population? J. Theor. Biol., 130, 209–221.

    MathSciNet  Google Scholar 

  • Nakamaru, M., & Iwasa, Y. (2006). The coevolution of altruism and punishment: Role of the selfish punisher. J. Theor. Biol., 240, 475–488.

    Article  MathSciNet  Google Scholar 

  • Nakamaru, M., Matsuda, H., & Iwasa, Y. (1997). The evolution of cooperation in a lattice-structured population. J. Theor. Biol., 184, 65–81.

    Article  Google Scholar 

  • Nakamaru, M., Nogami, H., & Iwasa, Y. (1998). Score-dependent fertility model for the evolution of cooperation in a lattice. J. Theor. Biol., 194, 101–124.

    Article  Google Scholar 

  • Niyogi, P. (2006). The computational nature of language learning and evolution. Cambridge: MIT Press.

    Google Scholar 

  • Nowak, M. A., & May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359, 826–829.

    Article  Google Scholar 

  • Nowak, M. A., & Sigmund, K. (2004). Evolutionary dynamics of biological games. Science, 303, 793–799.

    Article  Google Scholar 

  • Nowak, M. A., Sasaki, A., Taylor, C., & Fudenberg, D. (2004). Emergence of cooperation and evolutionary stability in finite populations. Nature, 428, 646–650.

    Article  Google Scholar 

  • Nowak, M. A., Tarnita, C. E., & Antal, T. (2010). Evolutionary dynamics in structured populations. Proc. R. Soc. Lond. B, Biol. Sci., 365, 19–30.

    Article  Google Scholar 

  • Ohtsuki, H., & Nowak, M. A. (2008). Evolutionary stability on graphs. J. Theor. Biol., 251, 698–707.

    Article  Google Scholar 

  • Ohtsuki, H., & Nowak, M. A. (2006). The replicator equation on graphs. J. Theor. Biol., 243, 86–97.

    Article  MathSciNet  Google Scholar 

  • Ohtsuki, H., Hauert, C., Lieberman, E., & Nowak, M. A. (2006). A simple rule for the evolution of cooperation on graphs and social networks. Nature, 441, 502–505.

    Article  Google Scholar 

  • Ohtsuki, H., Bordalo, P., & Nowak, M. A. (2007a). The one-third law of evolutionary dynamics. J. Theor. Biol., 249, 289–295.

    Article  Google Scholar 

  • Ohtsuki, H., Nowak, M. A., & Pacheco, J. M. (2007b). Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs. Phys. Rev. Lett., 98, 108106.

    Article  Google Scholar 

  • Ohtsuki, H., Pacheco, J. M., & Nowak, M. A. (2007c). Evolutionary graph theory: Breaking the symmetry between interaction and replacement. J. Theor. Biol., 246, 681–694.

    Article  MathSciNet  Google Scholar 

  • Pfeiffer, T., & Schuster, S. (2005). Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem. Sci., 30, 20–25.

    Article  Google Scholar 

  • Pinker, S., Nowak, M. A., & Lee, J. J. (2008). The logic of indirect speech. Proc. Natl. Acad. Sci. USA, 105, 833–838.

    Article  Google Scholar 

  • Platt, M. L., & Huettel, S. A. (2008). Risky business: The neuroeconomics of decision making under uncertainty. Nat. Neurosci., 11, 398–403.

    Article  Google Scholar 

  • Rand, D. G., Armao IV, J. J., Nakamaru, M., & Ohtsuki, H. (2010). Anti-social punishment can prevent the co-evolution of punishment and cooperation. J. Theor. Biol., 265, 624–632.

    Article  Google Scholar 

  • Roca, C. P., Cuesta, J. A., & Sánchez, A. (2006). Time scales in evolutionary dynamics. Phys. Rev. Lett., 97, 158701.

    Article  Google Scholar 

  • Sánchez, A., & Cuesta, J. A. (2005). Altruism may arise from individual selection. J. Theor. Biol., 235, 233–240.

    Article  Google Scholar 

  • Santos, F., Santos, M., & Pacheco, J. (2008). Social diversity promotes the emergence of cooperation in public goods games. Nature, 454, 213–216.

    Article  Google Scholar 

  • Schaffer, M. E. (1988). Evolutionarily stable strategies for a finite population and a variable contest size. J. Theor. Biol., 132, 469–478.

    Article  MathSciNet  Google Scholar 

  • Sigmund, K. (2010). The calculus of selfishness. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Straub, P. G. (1995). Risk dominance and coordination failures in static games. Q. Rev. Econ. Finance, 35, 339–363.

    Article  Google Scholar 

  • Szabó, G., & Fáth, G. (2007). Evolutionary games on graphs. Phys. Rep., 446, 97–216.

    Article  MathSciNet  Google Scholar 

  • Tarnita, C., Antal, T., & Nowak, M. A. (2009). Mutation-selection equilibrium in games with mixed strategies. J. Theor. Biol., 261, 50–57.

    Article  Google Scholar 

  • Taylor, C., Fudenberg, D., Sasaki, A., & Nowak, M. A. (2004). Evolutionary game dynamics in finite populations. Bull. Math. Biol., 66, 1621–1644.

    Article  MathSciNet  Google Scholar 

  • Taylor, P., & Jonker, L. (1978). Evolutionary stable strategies and game dynamics. Math. Biosci., 40, 145–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Traulsen, A., Claussen, J. C., & Hauert, C. (2005). Coevolutionary dynamics: From finite to infinite populations. Phys. Rev. Lett., 95, 238701.

    Article  Google Scholar 

  • Traulsen, A., Claussen, J. C., & Hauert, C. (2006). Coevolutionary dynamics in large, but finite populations. Phys. Rev. E, 74, 0119901.

    MathSciNet  Google Scholar 

  • Traulsen, A., Nowak, M. A., & Pacheco, J. M. (2007). Stochastic payoff evaluation increases the temperature of selection. J. Theor. Biol., 244, 349–356.

    Article  MathSciNet  Google Scholar 

  • Traulsen, A., Semmann, D., Sommerfeld, R. D., Krambeck, H.-J., & Milinski, M. (2010). Human strategy updating in evolutionary games. Proc. Natl. Acad. Sci. USA, 107, 2962–2966.

    Article  Google Scholar 

  • Uchida, S., & Sigmund, K. (2010). The competition of assessment rules for indirect reciprocity. J. Theor. Biol., 263, 13–19.

    Article  Google Scholar 

  • Weibull, J. (1995). Evolutionary game theory. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Wild, G., & Taylor, P. D. (2004). Fitness and evolutionary stability in game theoretic models of finite populations. Proc. R. Soc. Lond. B, Biol. Sci., 271, 2345–2349.

    Article  Google Scholar 

  • Wölfing, B., & Traulsen, A. (2009). Stochastic sampling of interaction partners versus deterministic payoff assignment. J. Theor. Biol., 257, 689–695.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hilbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilbe, C. Local Replicator Dynamics: A Simple Link Between Deterministic and Stochastic Models of Evolutionary Game Theory. Bull Math Biol 73, 2068–2087 (2011). https://doi.org/10.1007/s11538-010-9608-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9608-2

Keywords

Navigation