Skip to main content
Log in

Enumeration of Viral Capsid Assembly Pathways: Tree Orbits Under Permutation Group Action

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper uses combinatorics and group theory to answer questions about the assembly of icosahedral viral shells. Although the geometric structure of the capsid (shell) is fairly well understood in terms of its constituent subunits, the assembly process is not. For the purpose of this paper, the capsid is modeled by a polyhedron whose facets represent the monomers. The assembly process is modeled by a rooted tree, the leaves representing the facets of the polyhedron, the root representing the assembled polyhedron, and the internal vertices representing intermediate stages of assembly (subsets of facets). Besides its virological motivation, the enumeration of orbits of trees under the action of a finite group is of independent mathematical interest. If G is a finite group acting on a finite set X, then there is a natural induced action of G on the set \(\mathcal{T}_{X}\) of trees whose leaves are bijectively labeled by the elements of X. If G acts simply on X, then |X|:=|X n |=n⋅|G|, where n is the number of G-orbits in X. The basic combinatorial results in this paper are (1) a formula for the number of orbits of each size in the action of G on \(\mathcal{T}_{X_{n}}\), for every n, and (2) a simple algorithm to find the stabilizer of a tree \(\tau\in\mathcal{T} _{X}\) in G that runs in linear time and does not need memory in addition to its input tree. These results help to clarify the effect of symmetry on the probability and number of assembly pathways for icosahedral viral capsids, and more generally for any finite, symmetric macromolecular assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agbandje-McKenna, M., Llamas-Saiz, A. L., Wang, F., Tattersall, P., & Rossmann, M. G. (1998). Functional implications of the structure of the murine parvovirus, minute virus of mice. Structure, 6, 1369–1381.

    Article  Google Scholar 

  • Berger, B., & Shor, P. W. (1995). Local rules switching mechanism for viral shell geometry, Technical report, MIT-LCS-TM-527.

  • Bóna, M., & Sitharam, M. (2008). Influence of symmetry on probabilities of icosahedral viral assembly pathways. In Stockley, P. & Twarock, R. (Eds.), Computational and Mathematical Methods in Medicine: Special issue on Mathematical Virology.

    Google Scholar 

  • Berger, B., Shor, P., King, J., Muir, D., Schwartz, R., & Tucker-Kellogg, L. (1994). Local rule-based theory of virus shell assembly. Proc. Natl. Acad. Sci. USA, 91, 7732–7736.

    Article  MATH  Google Scholar 

  • Brinkmann, G., & Dress, A. (1997). A constructive enumeration of fullerenes. J. Algorithms, 23, 345–358.

    Article  MathSciNet  Google Scholar 

  • Caspar, D., & Klug, A. (1962). Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol., 27, 1–24.

    Google Scholar 

  • Compton, K. J. (1989). A logical approach to asymptotic combinatorics II: monadic second-order properties. J. Comb. Theory, Ser. A, 50(1), 110–131.

    Article  MATH  MathSciNet  Google Scholar 

  • Day, W. H. E. (1985). Optimal algorithms for comparing trees with labeled leaves. J. Classif., 2(1), 7–26.

    Article  MATH  Google Scholar 

  • Deza, M., & Dutour, M. (2005). Zigzag structures of simple two-faced polyhedra. Comb. Probab. Comput., 14(1–2), 31–57.

    Article  MATH  MathSciNet  Google Scholar 

  • Deza, M., Dutour, M., & Fowler, P. W. (2004). Zigzags, railroads, and knots in fullerenes. J. Chem. Inf. Comput. Sci., 44, 1282–1293.

    Google Scholar 

  • Gawron, P., Nekrashevich, V. V., & Sushchanskii, V. I. (1999). Conjugacy classes of the automorphism group of a tree. Math. Notes, 65(6), 787–790.

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson, J. E., & Speir, J. A. (1997). Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol. Biol., 269, 665–675.

    Article  Google Scholar 

  • Klin, M. H. (1973). On the number of graphs for which a given permutation group is the automorphism group (Russian). English translation: Kibernetika, 5, 892–870.

    Google Scholar 

  • Marzec, C. J., & Day, L. A. (1993). Pattern formation in icosahedral virus capsids: the papova viruses and nudaurelia capensis β virus. Biophys. J., 65, 2559–2577.

    Article  Google Scholar 

  • Rapaport, D., Johnson, J., & Skolnick, J. (1999). Supramolecular self-assembly: molecular dynamics modeling of polyhedral shell formation. Comput. Phys. Commun., 121–122, 231–235.

    Article  Google Scholar 

  • Reddy, V. S., Giesing, H. A., Morton, R. T., Kumar, A., Post, C. B., Brooks, C. L., & Johnson, J. E. (1998). Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. Biophys. J., 74, 546–558.

    Article  Google Scholar 

  • Seress, Á. (2003). Permutation Group Algorithms. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Sitharam, M., & Agbandje-McKenna, M. (2006). Modeling virus assembly using geometric constraints and tensegrity: avoiding dynamics. J. Bioinform. Comput. Biol., 13(6), 1232–1265.

    MathSciNet  Google Scholar 

  • Sitharam, M., & Bóna, M. (2004). Combinatorial enumeration of macromolecular assembly pathways. In Proceedings of the International Conference on Bioinformatics and Applications. Singapore: World Scientific.

    Google Scholar 

  • Stanley, R. (1999). Enumerative Combinatorics (Vol. 2). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Valiente, G. (2002). Algorithms on Trees and Graphs. New York: Springer.

    MATH  Google Scholar 

  • van Lint, J. H., & Wilson, R. M. (2006). A Course in Combinatorics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wagner, S. G. (2006). On an identity for the cycle indices of rooted tree automorphism groups. Electron. J. Comb., 13, 450–456.

    Google Scholar 

  • Woods, A. R. (1998). Coloring rules for finite trees and probabilities of monadic second order sentences. Random Struct. Algorithms, 10(4), 453–485.

    Article  MathSciNet  Google Scholar 

  • Zlotnick, A., Aldrich, R., Johnson, J. M., Ceres, P., & Young, M. J. (2000). Mechanisms of capsid assembly for an icosahedral plant virus. J. Virol., 277, 450–456.

    Article  Google Scholar 

  • Zlotnick, A. (1994). To build a virus capsid: an equilibrium model of the self assembly of polyhedral protein complexes. J. Mol. Biol., 241, 59–67.

    Article  Google Scholar 

  • Zlotnick, A., Johnson, J. M., Wingfield, P. W., Stahl, S. J., & Endres, D. (1999). A theoretical model successfully identifies features of hepatitis b virus capsid assembly. Biochemistry, 38, 14644–14652.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklós Bóna.

Additional information

M. Bóna was supported in part by NSF grant DMS0714912.

M. Sitharam was supported in part by NSF grant DMS0714912.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bóna, M., Sitharam, M. & Vince, A. Enumeration of Viral Capsid Assembly Pathways: Tree Orbits Under Permutation Group Action. Bull Math Biol 73, 726–753 (2011). https://doi.org/10.1007/s11538-010-9606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9606-4

Keywords

Navigation