Skip to main content
Log in

Effective Parameters Determining the Information Flow in Hierarchical Biological Systems

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Signaling networks are abundant in higher organisms. They play pivotal roles, e.g., during embryonic development or within the immune system. In this contribution, we study the combined effect of the various kinetic parameters on the dynamics of signal transduction. To this end, we consider hierarchical complex systems as prototypes of signaling networks. For given topology, the output of these networks is determined by an interplay of the single parameters. For different kinetics, we describe this by algebraic expressions, the so-called effective parameters.

When modeling switch-like interactions by Heaviside step functions, we obtain these effective parameters recursively from the interaction graph. They can be visualized as directed trees, which allows us to easily determine the global effect of single kinetic parameters on the system’s behavior. We provide evidence that these results generalize to sigmoidal Hill kinetics.

In the case of linear activation functions, we again show that the algebraic expressions can be immediately inferred from the topology of the interaction network. This allows us to transform time-consuming analytic solutions of differential equations into a simple graph-theoretic problem. In this context, we also discuss the impact of our work on parameter estimation problems. An issue is that even the fitting of identifiable effective parameters often turns out to be numerically ill-conditioned. We demonstrate that this fitting problem can be reformulated as the problem of fitting exponential sums, for which robust algorithms exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absil, P. A., Mahony, R., & Sepulchre, R. (2008). Optimization algorithms on matrix manifolds. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Bateman, H. (1910). The solution of a system of differential equations occurring in the theory of radioactive transformations. Proc. Camb. Philos. Soc., 15, 423–427.

    Google Scholar 

  • Bolouri, H., & Davidson, E. (2003). Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc. Natl. Acad. Sci. USA, 100(16), 9371–9376.

    Article  Google Scholar 

  • Davidescu, F., & Jǒrgensen, S. (2008). Structural parameter identifiability analysis for dynamic reaction networks. Chem. Eng. Sci., 63(19), 4754–4762.

    Article  Google Scholar 

  • Davies, B. (2002). Integral transforms and their applications. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • de Jong, H., Gouzé, J., Hernandez, C., Page, M., Sari, T., & Geiselmann, J. (2004). Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol., 66(2), 301–340.

    Article  MathSciNet  Google Scholar 

  • Del Vecchio, D., Ninfa, A., & Sontag, E. (2008). Modular cell biology: retroactivity and insulation. Mol. Syst. Biol., 4, 161.

    Google Scholar 

  • Denis-Vidal, L., Joly-Blanchard, G., & Noiret, C. (2003). System identifiability (symbolic computation) and parameter estimation (numerical computation). Numer. Algorithms, 34(2), 283–292.

    Article  MATH  MathSciNet  Google Scholar 

  • Drulhe, S., Ferrari-Trecate, G., de Jong, H., & Viari, A. (2006). Reconstruction of switching thresholds in piecewise-affine models of genetic regulatory networks. Lect. Notes Comput. Sci., 3927, 184–199.

    Article  Google Scholar 

  • Edelman, A., Arias, T. A., & Smith, S. T. (1998). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20(2), 303–353.

    Article  MATH  MathSciNet  Google Scholar 

  • Franke, R., Müller, M., Wundrack, N., Gilles, E. D., Klamt, S., Kähne, T., & Naumann, M. (2008). Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst. Biol., 2(4).

  • Glass, L., & Kauffman, S. A. (1973). The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol., 39(1), 103–129.

    Article  Google Scholar 

  • Gruber, P., & Theis, F. (2006). Grassmann clustering. In Proc. EUSIPCO 2006, Florence, Italy.

    Google Scholar 

  • Hengl, S., Kreutz, C., Timmer, J., & Maiwald, T. (2007). Data-based identifiability analysis of non-linear dynamical models. Bioinformatics, 23(19), 2612–2618.

    Article  Google Scholar 

  • Kaufmann, B. (2003). Fitting a sum of exponentials to numerical data. arXiv:physics/0305019v1.

  • Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  MathSciNet  Google Scholar 

  • Klamt, S., Saez-Rodriguez, J., Lindquist, J., Simeoni, L., & Gilles, E. (2006). A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform., 7(1), 56.

    Article  Google Scholar 

  • Klamt, S., & von Kamp, A. (2009). Computing paths and cycles in biological interaction graphs. BMC Bioinform., 10(1), 181.

    Article  Google Scholar 

  • Legewie, S., Herzel, H., Westerhoff, H. V., & Bluthgen, N. (2008). Recurrent design patterns in the feedback regulation of the mammalian signalling network. Mol. Syst. Biol., 4.

  • Nielsen, H. B. (2000a). Multi-exponential fitting of low-field 1H NMR data (Technical report). Technical University of Denmark.

  • Nielsen, H. B. (2000b). Separable nonlinear least squares (Technical report). Technical University of Denmark.

  • Öktem, H. (2005). A survey on piecewise-linear models of regulatory dynamical systems. Nonlinear Anal., 63(3), 336–349.

    Article  MATH  MathSciNet  Google Scholar 

  • O’Leary, D. (2004). Fitting exponentials: an interest in rates. Comput. Sci. Eng., 6(3), 66–69.

    Article  Google Scholar 

  • Pedersen, H. T., Bro, R., & Engelsen, S. B. (2002). Towards rapid and unique curve resolution of low-field NMR relaxation data: trilinear slicing versus two-dimensional curve fitting. J. Magn. Reson., 157(1), 141–155.

    Article  Google Scholar 

  • Plahte, E., Mestl, T., & Omholt, S. (1998). A methodological basis for description and analysis of systems with complex switch-like interactions. J. Math. Biol., 36(4), 321–348.

    Article  MATH  MathSciNet  Google Scholar 

  • Prony, R. (1795). Essai expérimental et analytique sur les lois de la dilatabilité et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, a différente températures. J. Éc. Polytech., 1, 24–76.

    Google Scholar 

  • Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., & Barabasi, A. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297(5586), 1551–1555.

    Article  Google Scholar 

  • Saez-Rodriguez, J., Simeoni, L., Lindquist, J. A., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U. U., Weismantel, R., Gilles, E. D., Klamt, S., & Schraven, B. (2007). A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol., 3(8), e163.

    Article  MathSciNet  Google Scholar 

  • Sharova, L., Sharov, A., Nedorezov, T., Piao, Y., Shaik, N., & Ko, M. (2008). Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res., 16(1), 45–58.

    Article  Google Scholar 

  • Snoussi, E. (1989). Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst., 4(3–4), 189–207.

    MATH  MathSciNet  Google Scholar 

  • Soete, D. (1972). Neutron activation analysis. New York: Wiley.

    Google Scholar 

  • Thattai, M., & van Oudenaarden, A. (2002). Attenuation of noise in ultrasensitive signaling cascades. Biophys. J., 82(6), 2943–2950.

    Article  Google Scholar 

  • Windig, W., & Antalek, B. (1997). Direct exponential curve resolution algorithm (DECRA): a novel application of the generalized rank annihilation method for a single spectral mixture data set with exponentially decaying contribution profiles. Chemom. Intell. Lab. Syst., 37(2), 241–254.

    Article  Google Scholar 

  • Wittmann, D. M., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D. A., Klamt, S., & Theis, F. J. (2009). Transforming boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol., 3(98).

  • Yen, H., Xu, Q., Chou, D., Zhao, Z., & Elledge, S. (2008). Global protein stability profiling in mammalian cells. Science, 322(5903), 918–923.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian J. Theis.

Additional information

F. Blöchl and D.M. Wittmann are equal contributors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blöchl, F., Wittmann, D.M. & Theis, F.J. Effective Parameters Determining the Information Flow in Hierarchical Biological Systems. Bull Math Biol 73, 706–725 (2011). https://doi.org/10.1007/s11538-010-9604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9604-6

Keywords

Navigation