Skip to main content
Log in

Lipid Metabolizing Enzyme Activities Modulated by Phospholipid Substrate Lateral Distribution

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Biological membranes contain many domains enriched in phospholipid lipids and there is not yet clear explanation about how these domains can control the activity of phospholipid metabolizing enzymes. Here we used the surface dilution kinetic theory to derive general equations describing how complex substrate distributions affect the activity of enzymes following either the phospholipid binding kinetic model (which assumes that the enzyme molecules directly bind the phospholipid substrate molecules), or the surface-binding kinetic model (which assumes that the enzyme molecules bind to the membrane before binding the phospholipid substrate). Our results strongly suggest that, if the enzyme follows the phospholipid binding kinetic model, any substrate redistribution would increase the enzyme activity over than observed for a homogeneous distribution of substrate. Besides, enzymes following the surface-binding model would be independent of the substrate distribution. Given that the distribution of substrate in a population of micelles (each of them a lipid domain) should follow a Poisson law, we demonstrate that the general equations give an excellent fit to experimental data of lipases acting on micelles, providing reasonable values for kinetic parameters—without invoking special effects such as cooperative phenomena. Our theory will allow a better understanding of the cellular-metabolism control in membranes, as well as a more simple analysis of the mechanisms of membrane acting enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carman, G. M., Deems, R. A., & Dennis, E. A. (1995). Lipid signaling enzymes and surface dilution kinetics. J. Biol. Chem., 270, 18711–18714.

    Article  Google Scholar 

  • Dennis, E. A. (1986). Micellization and solubilization of phospholipids by surfactants. Adv. Colloid Interface Sci., 26, 155–175.

    Article  Google Scholar 

  • Gambhir, A., Hangyas-Mihalyne, G., Zaitseva, I., Cafiso, D. S., Wang, J., Murray, D., Pentyala, S. N., Smith, S. O., & McLaughlin, S. (2004). Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys. J., 86, 2188–2207.

    Article  Google Scholar 

  • Glaser, M., Wanaski, S., Buser, C. A., Boguslavsky, V., Rashidzada, W., Morris, A., Rebecchi, M., Scarlata, S. F., Runnels, L. W., Prestwich, G. D., Chen, J., Aderem, A., Ahn, J., & McLaughlin, S. (1996). Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J. Biol. Chem., 271, 26187–26193.

    Article  Google Scholar 

  • Hendrickson, H. S., & Dennis, E. A. (1984). Kinetic analysis of the dual phospholipid model for phospholipase A2 action. J. Biol. Chem., 259, 5734–5739.

    Google Scholar 

  • Hernandez-Sotomayor, S. M., De Los Santos-Briones, C., Munoz-Sanchez, J. A., & Loyola-Vargas, V. M. (1999). Kinetic analysis of phospholipase C from Catharanthus roseus transformed roots using different assays. Plant Physiol., 120, 1075–1082.

    Article  Google Scholar 

  • Hinderliter, A., Biltonen, R. L., & Almeida, P. F. (2004). Lipid modulation of protein-induced membrane domains as a mechanism for controlling signal transduction. Biochemistry, 43, 7102–7110.

    Article  Google Scholar 

  • Hurley, J. H., & Grobler, J. A. (1997). Protein kinase C and phospholipase C: bilayer interactions and regulation. Curr. Opin. Struct. Biol., 7, 557–565.

    Article  Google Scholar 

  • Jacobson, K., Sheets, E. D., & Simson, R. (1995). Revisiting the fluid mosaic model of membranes. Science, 268, 1441–1442.

    Article  Google Scholar 

  • James, S. R., Paterson, A., Harden, T. K., & Downes, C. P. (1995). Kinetic analysis of phospholipase C beta isoforms using phospholipid-detergent mixed micelles. Evidence for interfacial catalysis involving distinct micelle binding and catalytic steps. J. Biol. Chem., 270, 11872–11881.

    Article  Google Scholar 

  • James, S. R., Paterson, A., Harden, T. K., Demel, R. A., & Downes, C. P. (1997). Dependence of the activity of phospholipase C beta on surface pressure and surface composition in phospholipid monolayers and its implications for their regulation. Biochemistry, 36, 848–855.

    Article  Google Scholar 

  • Jensen, L. B., Burgess, N. K., Gonda, D. D., Spencer, E., Wilson-Ashworth, H. A., Driscoll, E., Vu, M. P., Fairbourn, J. L., Judd, A. M., & Bell, J. D. (2005). Mechanisms governing the level of susceptibility of erythrocyte membranes to secretory phospholipase A2. Biophys. J., 88, 2692–2705.

    Article  Google Scholar 

  • Jones, G. A., & Carpenter, G. (1993). The regulation of phospholipase C-gamma 1 by phosphatidic acid. Assessment of kinetic parameters. J. Biol. Chem., 268, 20845–20850.

    Google Scholar 

  • Jorgensen, K., Davidsen, J., & Mouritsen, O. G. (2002). Biophysical mechanisms of phospholipase A2 activation and their use in liposome-based drug delivery. FEBS Lett., 531, 23–27.

    Article  Google Scholar 

  • Lagerholm, B. C., Weinreb, G. E., Jacobson, K., & Thompson, N. L. (2005). Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem., 56, 309–336.

    Article  Google Scholar 

  • Leidy, C., Linderoth, L., Andresen, T. L., Mouritsen, O. G., Jorgensen, K., & Peters, G. H. (2006). Domain-induced activation of human phospholipase A2 type IIA: local versus global lipid composition. Biophys. J., 90, 3165–3175.

    Article  Google Scholar 

  • Lichtenberg, D., Robson, R. J., & Dennis, E. A. (1983). Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochim. Biophys. Acta, 737, 285–304.

    Google Scholar 

  • Muderhwa, J. M., & Brockman, H. L. (1992). Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid-mediated signal transduction. J. Biol. Chem., 267, 24184–24192.

    Google Scholar 

  • Pawelczyk, T., & Matecki, A. (1997). Expression, purification and kinetic properties of human recombinant phospholipase C delta 3. Acta Biochim. Pol., 44, 221–229.

    Google Scholar 

  • Robson, R. J., & Dennis, E. A. (1978). Characterization of mixed micelles of phospholipids of various classes and a synthetic, homogeneous analogue of the nonionic detergent Triton X-100 containing nine oxyethylene groups. Biochim. Biophys. Acta, 508, 513–524.

    Article  Google Scholar 

  • Salinas, D. G., De La Fuente, M., & Reyes, J. G. (2005). Changes of enzyme activity in lipid signaling pathways related to substrate reordering. Biophys. J., 89, 885–894.

    Article  Google Scholar 

  • Sehgal, P., Mogensen, J. E., & Otzen, D. E. (2005). Using micellar mole fractions to assess membrane protein stability in mixed micelles. Biochim. Biophys. Acta, 1716, 59–68.

    Article  Google Scholar 

  • Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175, 720–731.

    Article  Google Scholar 

  • Thomas, M. J., Pang, K., Chen, Q., Lyles, D., Hantgan, R., & Waite, M. (1999). Lipid exchange between mixed micelles of phospholipid and Triton X-100. Biochim. Biophys. Acta, 1417, 144–156.

    Article  Google Scholar 

  • Zhou, C., Horstman, D., Carpenter, G., & Roberts, M. F. (1999). Action of phosphatidylinositol-specific phospholipase C gamma 1 on soluble and micellar substrates. Separating effects on catalysis from modulation of the surface. J. Biol. Chem, 274, 2786–2793.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino G. Salinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salinas, D.G., Reyes, J.G. & De La Fuente, M. Lipid Metabolizing Enzyme Activities Modulated by Phospholipid Substrate Lateral Distribution. Bull Math Biol 73, 2045–2067 (2011). https://doi.org/10.1007/s11538-010-9602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9602-8

Keywords

Navigation