Skip to main content

Advertisement

Log in

Role of Quantity of Additional Food to Predators as a Control in Predator–Prey Systems with Relevance to Pest Management and Biological Conservation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Necessity to understand the role of additional food as a tool in biological control programs is being increasingly felt, particularly due to its eco-friendly nature. A thorough mathematical analysis in this direction revealed the vital role of quality and quantity of the additional food in the controllability of the predator–prey systems. In this article controllability of the additional food—provided predator–prey system is studied from perspectives of pest eradication and biological conservation. Time optimal paths have been constructed to drive the state of the system to a desired terminal state by choosing quantity of the additional food as control variable. The theory developed in this article has been illustrated by solving problems related to pest eradication and biological conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azzouz, H., Giordanengo, P., Wäckers, F. L., & Kaiser, L. (2004). Effects of feeding frequency and sugar concentration on behavior and longevity of the adult aphid parasitoid: Aphidius ervi (Haliday) (Hymenoptera: Braconidae). Biol. Control, 31, 445–452.

    Article  Google Scholar 

  • Beach, J. P., Williams, L. III, Hendrix, D. L., & Price, L. D. (2003). Different food sources affect the gustatory response of Anaphes iole, an egg parasitoid of Lugus spp. J. Chem. Ecol., 29, 1203–1222.

    Article  Google Scholar 

  • Berndt, L. A., Wratten, S. D., & Hassan, P. (2002). Effects of buckwheat flowers on leafroller (Lepidoptera: Tortricidae) parasitoids in a New Zealand vineyard. Agric. For. Entomol., 4, 39–45.

    Article  Google Scholar 

  • Bilde, T., & Toft, S. (1998). Quantifying food limitation of arthropod predators in the field. Oecologia, 115, 54–58.

    Article  Google Scholar 

  • Buttermore, R. E., Turner, E., & Morrice, M. G. (1994). The introduced northern Pacific seastar Asterias amurensis in Tasmania. Mem. Qld. Mus., 36, 21–25.

    Google Scholar 

  • Cesari, L. (1983). Applications of mathematics series: Vol. 17. Optimization—theory and applications: problems with ordinary differential equations. New York: Springer.

    MATH  Google Scholar 

  • Clark, C. W. (2005). Mathematical bioeconomics—the optimal management of renewable resoruces. New Jersey: Wiley.

    Google Scholar 

  • Coll, M., & Guershon, M. (2002). Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu. Rev. Entomol., 47, 267–297.

    Article  Google Scholar 

  • Davis, S. E., Nager, R. G., & Furness, R. W. (2005). Food availability affects adult survival as well as breeding success of Parasitic Jaegers. Ecology, 86(4), 1047–1056.

    Article  Google Scholar 

  • DeBach, P., & Rosen, D. (1974). Biological control by natural enemies. London: Cambridge University Press.

    Google Scholar 

  • De Clercq, P. (2008). Culture and natural enemies on factitious foods and artificial diets. In J. L. Capinera (Ed.), Encyclopedia of entomology (Vol. I, pp. 1133–1136). Dordrecht: Springer.

    Google Scholar 

  • Fadamiro, H. Y., & Heimpel, G. E. (2001). Effects of partial sugar deprivation on lifespan and carbohydrate mobilization in the parasitoid Macrocentrus grandii (Hymenopters: Braconidae). Ann. Entomol. Soc. Am., 94, 909–916.

    Article  Google Scholar 

  • Gurr, G. M., & Wratten, S. D. (1999). Integrated biological control: a proposal for enhancing success in biological control. Int. J. Pest Manag., 45(2), 81–84.

    Article  Google Scholar 

  • Harmon, J. P. (2003), Indirect interactions among a generalist predator and its multiple foods. Ph.D. thesis, St. Paul, MN, University of Minnesota.

  • Harwood, J. D., Sunderland, K. D., & Symondson, W. O. C. (2004). Prey selection by linyphiid spiders: molecular tracking of the effects of alternative prey on rates of aphid consumption in the field. Mol. Ecol., 13, 3549–3560.

    Article  Google Scholar 

  • Harwood, J. D., Sunderland, K. D., & Symondson, W. O. C. (2005). Monoclonal antibodies reveal the potential of the tetragnathids spider Pachygnatha degeeri (Araneae: Tetragnathidae) as an aphid predator. Bull. Entomol. Res., 95, 161–167.

    Article  Google Scholar 

  • Harwood, J. D., & Obrycki, J. J. (2005). The role of alternative prey in sustaining predator populations. In M. S. Hoddle (Ed.), Proc. second int. symp. biol. control of arthropods (Vol. II, pp. 453–462).

    Google Scholar 

  • Hendrix, D., Wei, Y., & Leggett, J. E. (1992). Homopteran honeydew sugar composition is determined by both the insect and plant species. Comp. Biochem. Physiol. B, 101, 23–27.

    Article  Google Scholar 

  • Holling, C. S. (1959). Some characteristics of simple types of predation and parasitism. Can. Entomol., 91, 385–398.

    Article  Google Scholar 

  • Jervis, M. A. (1998). Functional and evolutionary aspects of mouthpart structure in parasitoid wasps. Biol. J. Linn. Soc., 63, 461–493.

    Article  Google Scholar 

  • Kot, M. (2001). Elements of mathematical ecology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lafferty, K. D., & Kuris, A. M. (1994). Potential uses for biological control of alien marine species. In D. Cottingham (Ed.), Proc. conf. and workshop on nonindigenous estuarine and marine organisms, U.S. Department of Commerce, NOAA Office of the Chief Scientist. Washington: U.S. Gov. Printing Office.

    Google Scholar 

  • Lafferty, K. D., & Kuris, A. M. (1996). Biological control of marine pests. Ecology, 77(7), 1989–2000.

    Article  Google Scholar 

  • Landis, D. A., Wratten, S. D., & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol., 45, 175–201.

    Article  Google Scholar 

  • Margaritopoulos, J. T., Tsitsipis, J. A., & Perdikis, D. C. (2003). Biological characteristics of the mirids Macrolophus costalis and Macroplophus pygmaeus preying on the tobacco form of Myzus persicae (Hemiptera: Aphididae). Bull. Entomol. Res., 93, 39–45.

    Google Scholar 

  • McDougall, S. J., & Mills, N. J. (1997). The influence of hosts, temperature and food sources on the longevity of Trichogramma platneri. Entomol. Exp. Appl., 83, 195–203.

    Article  Google Scholar 

  • Miller, R. F. (1985). Sea urchin pathogen: a possible tool for biological control. Mar. Ecol. Prog. Ser., 21, 169–174.

    Article  Google Scholar 

  • Moyle, P. B. (1991). Ballast water introductions. Fishereis, 16, 4–6.

    Google Scholar 

  • Murdoch, W. W., Chesson, J., & Chesson, P. L. (1985). Biological control in theory and practice. Am. Nat., 125(3), 344–366.

    Article  Google Scholar 

  • Perdikis, D., & Lykouressis, D. (2000). Effects of various items, host plants, and temperature on the development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Biol. Control, 17, 55–60.

    Article  Google Scholar 

  • Perdikis, D., & Lykouressis, D. (2004). Macrolophus pygmaeus (Hemiptera: Miridae) population parameters and biological characteristics when feeding on eggplant and tomato without prey. J. Econ. Entomol., 97, 1291–1298.

    Article  Google Scholar 

  • Perdikis, D., Lykouressis, D., & Economou, L. (1999). The influence of temperature, photoperiod and plant type on the predation rate of Macrolophus pygmaeus on Myzus persicae. BioControl, 44, 281–289.

    Article  Google Scholar 

  • Sabelis, M. W., & van Rijn, P. C. J. (2005). When does alternative food promote biological pest control. In M. S. Hoddle (Ed.), Proc. second int. symp. biol. control of arthropods (Vol. II, pp. 428–437).

    Google Scholar 

  • Shannon, P. S., Chrzanowski, T. H., & Grover, J. P. (2007). Prey food quality affects flagellate ingestion rates. Microb. Ecol., 53, 66–73.

    Article  Google Scholar 

  • Siekmann, G., Tenhumberg, B., & Keller, M. A. (2001). Feeding and survival in parasitic wasps: sugar concentration and timing matter. Oikos, 95(3), 425–430.

    Article  Google Scholar 

  • Srinivasu, P. D. N., Prasad, B. S. R. V., & Venkatesulu, M. (2007). Biological control through provision of additional food to predators: a theoretical study. Theor. Popul. Biol., 72, 111–120. doi:10.1016/j.tpb.2007.03.011.

    Article  MATH  Google Scholar 

  • Srinivasu, P. D. N., & Prasad, B. S. R. V. (2010). Time optimal control of an additional food provided predator–prey system with applications to pest management and biological conservation. J. Math. Biol., 60, 591–613. doi:10.1007/s00285-009-0279-2.

    Article  MathSciNet  Google Scholar 

  • Toft, S. (2005). The quality of aphids as food for generalist predators: implications for natural control of aphids. Eur. J. Entomol., 102(3), 371–383.

    Google Scholar 

  • van Baalen, M., Křivan, V., van Rijn, P. C. J., & Sabelis, M. W. (2001). Alternative food, switching predators, and the persistence of predator–prey systems. Am. Nat., 157(5), 512–524.

    Article  Google Scholar 

  • van Rijn, P. C. J., van Houten, Y. M., & Sabelis, M. W. (2002). How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology, 83, 2664–2679.

    Article  Google Scholar 

  • Vandekerkhove, B., & De Clercq, P. (2010). Pollen as an alternative or supplementary food for the mirid predator. Macrolophus pygmaeus. Biol. Control, 53, 238–242.

    Article  Google Scholar 

  • Wäckers, F. L. (2004). Assessing the suitability of flowering herbs as parasitoid food soruces: flower attractiveness and nectar accessibility. Biol. Control, 29, 307–314.

    Article  Google Scholar 

  • Wäckers, F. L. (2005). Suitability of (extra-) floral nectar, pollen, and honeydew as insect food sources. In F. L. Wäckers, P. C. J. van Rijn, & L. Bruin (Eds.), Plant-provided food for carnivorous insects, a protective mutualism and its applications (pp. 17–74). London: Cambridge University Press.

    Chapter  Google Scholar 

  • Wade, M. R., Zalucki, M. P., Wrateen, S. D., & Robinson, K. A. (2008). Conservation biological control of arthropods using artificial food sprays: current status and future challenges. Biol. Control, 45, 185–199.

    Article  Google Scholar 

  • Wootton, J. T. (1994). The nature and consequences of indirect effects in ecological communities. Ann. Rev. Ecol. Syst., 25, 443–466.

    Article  Google Scholar 

  • Wratten, S., Berndt, L., Gurr, G., Tylianakis, J., Fernando, P., & Didham, R. (2002). Adding floral diversity to enhance parasitoid fitness and efficacy. In R. G. Van Driesche (Ed.), Proc. first int. symp. biol. control of arthropods (pp. 211–214).

    Google Scholar 

  • Wu, H., Meng, L., & Li, B. (2008). Effects of feeding frequency and sugar concentrations on lifetime reproductive success of Meteorus pulchricornis (Hymenoptera: Braconidae). Biol. Control, 45, 353–359.

    Article  Google Scholar 

  • Zhao, B., Qiu, J. W., & Qian, P. Y. (2003). Effects of food availability on larval development in the slipper limpet Crepidula onyx (Sowerby). J. Exp. Mar. Biol. Ecol., 294, 219–223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. N. Srinivasu.

Additional information

This work is supported by CSIR, Govt. of India—sanction no. 25(0159)/08/EMR-II.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasu, P.D.N., Prasad, B.S.R.V. Role of Quantity of Additional Food to Predators as a Control in Predator–Prey Systems with Relevance to Pest Management and Biological Conservation. Bull Math Biol 73, 2249–2276 (2011). https://doi.org/10.1007/s11538-010-9601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9601-9

Keywords

Navigation