Skip to main content
Log in

Stochastic Analysis of the Motion of DNA Nanomechanical Bipeds

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we formulate and analyze a Markov process modeling the motion of DNA nanomechanical walking devices. We consider a molecular biped restricted to a well-defined one-dimensional track and study its asymptotic behavior. Our analysis allows for the biped legs to be of different molecular composition, and thus to contribute differently to the dynamics. Our main result is a functional central limit theorem for the biped with an explicit formula for the effective diffusivity coefficient in terms of the parameters of the model. A law of large numbers, a recurrence/transience characterization and large deviations estimates are also obtained. Our approach is applicable to a variety of other biological motors such as myosin and motor proteins on polymer filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antal, T., & Krapivsky, P. L. (2007). Molecular spiders with memory. Phys. Rev. E, 76, 021121.

    Article  Google Scholar 

  • Antal, T., Krapivsky, P. L., & Mallick, K. (2007). Molecular spiders in one dimension. J. Stat. Mech., P08027.

  • Bath, J., & Turberfield, A. J. (2007). DNA nanomachines. Nat. Nanotechnol., 2, 275–284.

    Article  Google Scholar 

  • Ben-Ari, I., & Neumann, M. (2010, accepted for publication). Probabilistic approach to Perron root, the group inverse, and applications. Linear Multilinear Algebra. Preprint is available at http://www.math.uconn.edu/~benari/pdf/groupinv.pdf.

  • Ben-Israel, A., & Greville, T. N. E. (2003). Generalized inverses (2nd ed.). CMS books in mathematics (Vol. 15). New York: Springer.

    MATH  Google Scholar 

  • Billingsley, P. (1999). Convergence of probability measures (2nd edn.). New York: Wiley.

    Book  MATH  Google Scholar 

  • Deutsch, E., & Neumann, M. (1985). On the first and second order derivatives of the Perron vector. Linear Algebra Appl., 71, 57–76.

    Article  MATH  MathSciNet  Google Scholar 

  • Durrett, R. (1996). Probability: Theory and Examples (2nd edn.). Belmont: Duxbury.

    Google Scholar 

  • Gallesco, C., Müller, S., & Popov, S. (2010). A note on spider walks. ESAIM: Probab. Stat. doi:10.1051/ps/2010008.

  • Goel, A., & Vogel, V. (2008). Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotechnol., 3, 465–475.

    Article  Google Scholar 

  • Kipnis, C., & Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys., 104, 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  • Kosygina, E., & Zerner, M. (2008). Positively and negatively excited random walks on integers, with branching processes. Electron. J. Probab., 13, 1952–1979.

    MATH  MathSciNet  Google Scholar 

  • Lalley, S. P. (1986). Ruelle’s Perron–Frobenius theorem and the central limit theorem for additive functionals of one-dimensional Gibbs states. In IMS lecture notes monograph series: Vol. 8. Adaptive statistical procedures and related topics (pp. 428–446). Upton, NY, 1985.

    Chapter  Google Scholar 

  • Macci, C. (2001). Continuous-time Markov additive processes: composition of large deviation principles and comparison between exponential rates of convergence. J. Appl. Probab., 38, 917–931.

    Article  MATH  MathSciNet  Google Scholar 

  • Meyn, S., & Tweedie, R. L. (2009). Markov chains and stochastic stability. Cambridge mathematical library. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Müller, M. I. J., Klumpp, S., & Lipowsky, R. (2008). Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl. Acad. Sci. USA, 105, 4609–4614.

    Article  Google Scholar 

  • Ney, P., & Nummelin, E. (1987). Markov additive processes, II: large deviations. Ann. Probab., 15, 593–609.

    Article  MATH  MathSciNet  Google Scholar 

  • Pei, R., Taylor, S. K., Stefanovic, D., Rudchenko, S., Mitchell, T. E., & Stojanovic, M. N. (2006). Behavior of polycatalytic assemblies in a substrate-displaying matrix. J. Am. Chem. Soc., 128, 12693–12699.

    Article  Google Scholar 

  • Pollard, T., & Borisy, G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112, 453–465.

    Article  Google Scholar 

  • Seeman, N. C. (2005). From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci., 30, 119–125.

    Article  Google Scholar 

  • Seneta, E. (2006). Non-negative matrices and Markov chains. New York: Springer. Revised reprint of the second (1981) edition.

    MATH  Google Scholar 

  • Sherman, W. B., & Seeman, N. C. (2004). A precisely controlled DNA biped walking device. Nano Lett., 4, 1203–1207.

    Article  Google Scholar 

  • Sznitman, A. S. (2000). Slowdown estimates and central limit theorem for random walks in random environment. J. Eur. Math. Soc., 2, 93–143.

    Article  MATH  MathSciNet  Google Scholar 

  • Weindl, J., Dawy, Z., Hanus, P., Zech, J., & Mueller, J. C. (2009). Modeling promoter search by E. coli RNA polymerase: one-dimensional diffusion in a sequence-dependent energy landscape. J. Theor. Biol., 7, 628–634.

    Article  Google Scholar 

  • Welte, M. A., & Gross, S. P. (2008). Molecular motors: a traffic cop within? HFSP J., 2, 178–182.

    Article  Google Scholar 

  • Wilkinson, J. H. (1988). The algebraic eigenvalue problem, numerical mathematics and scientific computation series. New York: Oxford University Press.

    Google Scholar 

  • Yurke, B., Turberfield, A. J., Millis, A. P. Jr., Simmel, F. C., & Neumann, J. L. (2000). A DNA-fueled molecular machine made of DNA. Nature, 406, 605–608.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Matzavinos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Ari, I., Boushaba, K., Matzavinos, A. et al. Stochastic Analysis of the Motion of DNA Nanomechanical Bipeds. Bull Math Biol 73, 1932–1951 (2011). https://doi.org/10.1007/s11538-010-9600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9600-x

Keywords

Navigation