Skip to main content
Log in

Restricted Diffusion in Cellular Media: (1+1)-Dimensional Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider the diffusion of molecules in a one-dimensional medium consisting of a large number of cells separated from the extra-cellular space by permeable membranes. The extra-cellular space is completely connected and allows unrestricted diffusion of the molecules. Furthermore, the molecules can diffuse within a given cell, i.e., the intra-cellular space; however, direct diffusion from one cell to another cell cannot occur. There is a movement of molecules across the permeable membranes between the intra- and extra-cellular spaces. Molecules from one cell can cross the permeable membrane into the extra-cellular space, then diffuse through the extra-cellular space, and eventually enter the intra-cellular space of a second cell. Here, we develop a simple set of model equations to describe this phenomenon and obtain the solutions using an eigenfunction expansion. We show that the solutions obtained using this method are particularly convenient for interpreting data from experiments that use techniques from nuclear magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophys. J., 66, 259–267.

    Article  Google Scholar 

  • Dudko, O. K., Berezhkovskii, A. M., & Weiss, G. H. (2004). Diffusion in the presence of periodically spaced permeable membranes. J. Chem. Phys., 121, 11283–11288.

    Article  Google Scholar 

  • Henning, E. C., Meng, X., Fisher, M., & Sotak, C. H. (2006). Visualization of cortical spreading depression using manganese-enhanced magnetic resonance imaging. Magn. Reson. Med., 53, 851–857.

    Article  Google Scholar 

  • Keener, J., & Sneyd, J. (1998). Mathematical physiology. New York: Springer.

    MATH  Google Scholar 

  • Kuchel, P. W., & Durrant, C. J. (1999). Permeability coefficients from NMR q-space data: Models with unevenly spaced semi-permeable parallel membranes. J. Magn. Reson., 139, 258–272.

    Article  Google Scholar 

  • Kuchel, P. W., Eykyn, T. R., & Regan, D. G. (2004). Measurement of compartment size in q-space experiments: Fourier transform of the second derivative. Magn. Reson. Med., 52, 907–912.

    Article  Google Scholar 

  • Minematsu, K., Li, L., Sotak, C. H., Davis, M. A., & Fisher, M. (1992). Reversible focal ischemic injury demonstrated by diffusion-weighted magnetic resonance imaging in rats. Stroke, 23, 1304–1310.

    Google Scholar 

  • Miura, R. M., Huang, H., & Wylie, J. J. (2007). Cortical spreading depression: an enigma. Eur. Phys. J., Spec. Top., 147, 287–302.

    Article  Google Scholar 

  • Murad, M. A., Bennethum, L. S., & Cushman, J. H. (1995). A multi-scale theory of swelling porous media: I. Application to one-dimensional consolidation. Transp. Porous Media, 19, 93–122.

    Article  Google Scholar 

  • Powles, J. G., Mallett, M. J. D., Rickayzen, G., & Evans, W. A. B. (1992). Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers. Proc. R. Soc. Lond. A, 436, 391–403.

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro, B. E. (2000). An electrophysiological model of gap-junction mediated cortical spreading depression including osmotic volume changes. Ph.D. Thesis, UCLA.

  • Tanner, J. E. (1978). Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient. J. Chem. Phys., 69, 1748–1754.

    Article  Google Scholar 

  • Tuckwell, H. C., & Miura, R. M. (1978). A mathematical model for spreading cortical depression. Biophys. J., 23, 257–276.

    Article  Google Scholar 

  • van der Weerd, L., Melnikov, S. M., Vergeldt, F. J., Novikov, E. G., & Van As, H. (2002). Modelling of self-diffusion and relaxation time NMR in multicompartment systems with cylindrical geometry. J. Magn. Reson., 156, 213–221.

    Article  Google Scholar 

  • von Meerwall, E., & Ferguson, R. D. (1981). Interpreting pulsed-gradient spin-echo diffusion experiments with permeable membranes. J. Chem. Phys., 74, 6956–6959.

    Article  Google Scholar 

  • Whitaker, S. (1999). The method of volume averaging (theory and applications of transport in porous media). The Netherlands: Kluwer Academic.

    Google Scholar 

  • Wylie, J. J., & Miura, R. M. (2006). Traveling waves in coupled reaction-diffusion models with degenerate sources. Phys. Rev. E, 74, 021909.

    MathSciNet  Google Scholar 

  • Wylie, J. J., Huang, H., & Miura, R. M. (2009). Systems of coupled diffusion equations with degenerate nonlinear source terms: linear stability and traveling waves. Discrete Contin. Dyn. Syst., Ser. A, 23, 561–569.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Wylie, J.J. & Miura, R.M. Restricted Diffusion in Cellular Media: (1+1)-Dimensional Model. Bull Math Biol 73, 1682–1694 (2011). https://doi.org/10.1007/s11538-010-9589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9589-1

Keywords

Navigation