Skip to main content
Log in

Understanding Streaming in Dictyostelium discoideum: Theory Versus Experiments

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Recent experimental work involving Dictyostelium discoideum seems to contradict several theoretical models. Experiments suggest that localization of the release of the chemoattractant cyclic adenosine monophosphate to the uropod of the cell is important for stream formation during aggregation. Yet several mathematical models are able to reproduce streaming as the cells aggregate without taking into account localization of the chemoattractant. A careful analysis of the experiments and the theory suggests the two major features of the system which are important to stream formation are random cell motion and chemotaxis to regions of higher cell density. Random cell motion acts to reduce streaming, whereas chemotaxis to regions of higher cell density reinforces streaming. With this understanding, the experimental results can be explained in a manner consistent with the theoretical results. In all the experiments, alterations in the two main factors of random motion and chemotaxis to regions of higher cell density, not the localization of the release of the chemoattractant, can explain the results as they relate to streaming. Additionally, a comparison of results from a mathematical model that simulates cells which localize the chemoattractant and cells which do not shows little difference in the streaming patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Curto, E., Weening, K. E., & Schaap, P. (2007). Pharmacological profiling of the Dictyostelium adenylate cyclases ACA, ACB and ACG. Biochem. J., 401, 309–316.

    Article  Google Scholar 

  • Clotworthy, M., & Traynor, D. (2006). On the effects of cycloheximide on cell motility and polarisation in Dictyostelium discoideum. BMC Cell Biol.

  • Cohen, M. H., Drage, D. J., & Robertson, A. (1975). Iontophoresis of cyclic AMP. Biophys. J., 15, 753–763.

    Article  Google Scholar 

  • Dallon, J. C. (2000). Numerical aspects of discrete and continuum hybrid models in cell biology. Appl. Numer. Math., 32, 137–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Dallon, J. C., & Othmer, H. G. (1997). A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Phil. Trans. R. Soc. Lond. B, 352(1357), 391–417.

    Article  Google Scholar 

  • Dallon, J. C., & Othmer, H. G. (1998). A continuum analysis of the chemotactic signal seen by Dictyostelium discoideum. J. Theor. Biol., 194, 461–483.

    Article  Google Scholar 

  • Dallon, J. C., & Othmer, H. G. (2004). How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J. Theor. Biol., 231, 203–222.

    Article  MathSciNet  Google Scholar 

  • Dallon, J. C., Jang, W., & Gomer, R. H. (2006). Mathematically modeling the effects of counting factor (CF) in Dictyostelium discoideum. Math. Med. Biol., 23, 45–62.

    Article  MATH  Google Scholar 

  • Devreotes, P. N., & Steck, T. L. (1979). Cyclic 3′,5′ AMP relay in Dictyostelium discoideum II. Requirements for the initiation and termination of the response. J. Cell Biol., 80, 300–309.

    Article  Google Scholar 

  • Gerisch, G., & Wick, U. (1975). Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem. Biophys. Res. Commun., 65, 364–370.

    Article  Google Scholar 

  • Hilgardt, C., Cejkova, J., Hauser, M. J. B., & Sevcikova, H. (2008). Streamless aggregation of Dictyostelium in the presence of isopropylidenadenosin. Biophys. Chem., 132, 9–17.

    Article  Google Scholar 

  • Hoefer, T., Sherratt, J. A., & Maini, P. K. (1995). Dictyostelium discoideum: cellular self-organization in an excitable biological medium. Proc. R. Soc. Lond. Biol., 249–257.

  • Hofer, T., & Maini, P. K. (1997). Streaming instability of slime mold amoebae: An analytical model. Phys. Rev. E, 56(2), 2074–2080.

    Article  Google Scholar 

  • Kessin, R. H. (2001). Dictyostelium evolution, cell biology, and the development of multicellularity. Developmental and cell biology series. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kriebel, P. W., Barr, V. A., & Parent, C. A. (2003). Adenylyl cyclase localization regulates streaming during chemotaxis. Cell, 112, 549–560.

    Article  Google Scholar 

  • Kriebel, P. W., Barr, V. A., Rericha, E. C., Zhang, G., & Parent, C. A. (2008). Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge. J. Cell Biol., 183, 949–961.

    Article  Google Scholar 

  • Levine, H., Aronson, I., Tsimring, L., & Truong, T. V. (1996). Positive genetic feedback governs cAMP spiral wave formation in Dictyostelium. Proc. Nat. Acad. Sci. USA, 93, 6382–6386.

    Article  Google Scholar 

  • Loomis, W. F. (1975). Dictyostelium discoideum: A developemental system. New York: Academic Press.

    Google Scholar 

  • MacKay, S. (1978). Computer simulation of aggregation in Dictyostelium discoideum. J. Cell Sci., 33, 1–16.

    Google Scholar 

  • Othmer, H. G., & Schaap, P. (1998). Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Comments Theor. Biol., 5, 175–282.

    Google Scholar 

  • Palsson, E., & Othmer, H. G. (2000). A model for individual and collective cell movement in Dictyostelium discoideum. Proc. Nat. Acad. Sci. USA, 97, 10448–10453.

    Article  Google Scholar 

  • Parent, C. A., & Devreotes, P. N. (1996). Constitutively active adenylyl cyclase mutant requires neither g proteins nor cytosolic regulators. J. Biol. Chem., 271(31), 18333–18336.

    Article  Google Scholar 

  • Parnas, H., & Segel, L. A. (1977). Computer evidence concerning the chemotactic signal in Dictyostelium discoideum. J. Cell Sci., 25, 191–204.

    Google Scholar 

  • Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. J. Comp. Phys., 25, 220–252.

    Article  MathSciNet  MATH  Google Scholar 

  • Höfer, T., Sherratt, J. A., & Maini, P. K. (1995). Dictyostelium discoideum: cellular self-organization in an excitable biological medium. Proc. R. Soc. Lond. B, 259(1356), 249–257.

    Article  Google Scholar 

  • Roisin-Bouffay, C., Jang, W., Caprette, D. R., & Gomer, R. H. (2000). A precise group size in Dictyostelium is generated by a cell-counting factor modulating cell-cell adhesion. Mol. Cell, 6(October), 953–959.

    Google Scholar 

  • Roos, W., Nanjundiah, V., Malchow, D., & Gerisch, G. (1975). Amplification of cyclic AMP signals in aggregating cells of Dictyostelium discoideum. FEBS Lett., 53, 139–142.

    Article  Google Scholar 

  • Savill, N., & Hogeweg, P. (1997). Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol., 184, 229–235.

    Article  Google Scholar 

  • Tang, Y., & Othmer, H. G. (1995). Excitation, oscillations and wave propagation in a G-protein based model of signal transduction in Dictyostelium discoideum. Phil. Trans. Roy. Soc. (Lond.), B349, 179–195.

    Article  Google Scholar 

  • Varnum-Finney, B., Edwards, K., Voss, E., & Soll, D. (1987). Amebae of Dictyostelium discoideum respond to an increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning: evidence for a temporal mechanism in ameboid chemotaxis. Cell Motil. Cytoskelet., 8(1), 7–17.

    Article  Google Scholar 

  • Vasiev, B., Siegert, F., & Weijer, C. J. (1997). A hydrodynamic model for Dictostelium discoideum mound formation. J. Theor. Biol., 184, 441–450.

    Article  Google Scholar 

  • Vasiev, B. N., Hogeweg, P., & Panfilov, A. V. (1994). Simulation of Dictyostelium discoideum aggregation via reaction-diffusion model. Phys. Rev. Lett., 73(23), 3173–3176.

    Article  Google Scholar 

  • Vicker, M. G. (1994). The regulation of chemotaxis and chemokinesis in Dictyostelium amoebae by temporal signals and spatial gradients of cyclic AMP. J. Cell Sci., 107(Pt 2), 659–667.

    Google Scholar 

  • Wessels, D., Reynolds, J., Johnson, O., Voss, E., Burns, R., Daniels, K., Garrard, E., O’Halloran, T. J., & Soll, D. (2000). Clathrin plays a novel role in the regulation of cell polarity, pseudopod formation, uropod stability and motility in Dictyostelium. J. Cell Sci., 113(1), 21–36.

    Google Scholar 

  • Wessels, D., Soll, D., Knecht, D., Loomis, W., Lozanne, A. D., & Spudich, J. (1988). Cell motility and chemotaxis in Dictyostelium. Dev. Biol., 128(1), 164–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Dallon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallon, J.C., Dalton, B. & Malani, C. Understanding Streaming in Dictyostelium discoideum: Theory Versus Experiments. Bull Math Biol 73, 1603–1626 (2011). https://doi.org/10.1007/s11538-010-9583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9583-7

Keywords

Navigation