Skip to main content
Log in

Cell Physician: Reading Cell Motion

A Mathematical Diagnostic Technique Through Analysis of Single Cell Motion

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cell motility is an essential phenomenon in almost all living organisms. It is natural to think that behavioral or shape changes of a cell bear information about the underlying mechanisms that generate these changes. Reading cell motion, namely, understanding the underlying biophysical and mechanochemical processes, is of paramount importance. The mathematical model developed in this paper determines some physical features and material properties of the cells locally through analysis of live cell image sequences and uses this information to make further inferences about the molecular structures, dynamics, and processes within the cells, such as the actin network, microdomains, chemotaxis, adhesion, and retrograde flow. The generality of the principals used in formation of the model ensures its wide applicability to different phenomena at various levels. Based on the model outcomes, we hypothesize a novel biological model for collective biomechanical and molecular mechanism of cell motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell. New York: Garland.

    Google Scholar 

  • Alt, W., & Dembo, M. (1999). Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci., 156, 207–228.

    Article  MATH  Google Scholar 

  • Bottino, D., Mogilner, A., Roberts, T., Stewart, M., & Oster, G. (2002). How nematode sperm crawl. J. Cell Sci., 115, 367–384.

    Google Scholar 

  • Bray, D. (2001). Cell movements. New York: Garland.

    Google Scholar 

  • Caille, N., Thoumine, O., Tardy, Y., & Meister, J. J. (2002). Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech., 35(2), C177–C188.

    Article  Google Scholar 

  • Campi, G., Varma, R., & Dustin, M. L. (2005). Actin and agonist mhc-peptide complex-dependent t cell receptor microclusters as scaffolds for signaling. J. Exp. Med., 202(8), 1031–1036.

    Article  Google Scholar 

  • Coskun, H. (2006). Mathematical models for cell movements and model based inverse problems. Ph.D. thesis, University of Iowa.

  • Coskun, H. (2009). A continuum model with free boundary formulation and the inverse problem for ameboid cell motility. Preprint.

  • Coskun, H., Li, Y., & Mackey, M. A. (2007). Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data. J. Theor. Biol., 244(2), 169–179.

    Article  MathSciNet  Google Scholar 

  • Dobereiner, H. G., Dubin-Thaler, B. J., Hofman, J. M., Xenias, H. S., Sims, T. N., Giannone, G., Dustin, M. L., Wiggins, C. H., & Sheetz, M. P. (2006). Lateral membrane waves constitute a universal dynamic pattern of motile cells. Phys. Rev. Lett., 97(3), 038102.

    Article  Google Scholar 

  • Defilippi, P., Olivo, C., Venturino, M., Dolce, L., Silengo, L., & Tarone, G. (1999). Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc. Res. Tech., 47, 67–78.

    Article  Google Scholar 

  • DiMilla, P. A., Barbee, K., & Lauffenburger, D. A. (1991). Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J., 60, 15–37.

    Article  Google Scholar 

  • Dong, C., & Skalak, R. (1992). Leukocyte deformability: finite-element modeling of large viscoelastic deformation. J. Theor. Biol., 158, 173–193.

    Article  Google Scholar 

  • Fournier, M. F., Sauser, R., Ambrosi, D., Meister, J. J., & Verkhovsky, A. B. (2010). Force transmission in migrating cells. J. Cell Biol., 188(2), 287–297.

    Article  Google Scholar 

  • Giannone, G., Dubin-Thaler, B. J., Rossier, O., Cai, Y., Chaga, O., Jiang, G., Beaver, W., Dobereiner, H. G., Freund, Y., Borisy, G., & Sheetz, M. P. (2007). Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell, 128(3), 561–575.

    Article  Google Scholar 

  • Glading, A., Lauffenburger, D. A., & Wells, A. (2002). Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol., 12(1), 46–54.

    Article  Google Scholar 

  • Gupton, S. L., Anderson, K. L., Kole, T. P., Fischer, R. S., Ponti, A., Hitchcock-DeGregori, S. E., Danuser, G., Fowler, V. M., Wirtz, D., Hanein, D., & Waterman-Storer, C. M. (2005). Cell migration without a lamellipodium. J. Cell Biol., 168(4), 619–631.

    Article  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: Active contour models. Int. J. Comput. Vis., 1, 321–331.

    Article  Google Scholar 

  • Koestler, S. A., Auinger, S., Vinzenz, M., Rottner, K., & Small, J. V. (2008). Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat. Cell Biol., 10(3), 306–313.

    Article  Google Scholar 

  • Krauss, K., & Altevogt, P. (1999). Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts. J. Biol. Chem., 274(52), 36,921–36,927.

    Article  Google Scholar 

  • Kuusela, E., & Alt, W. (2009). Continuum model of cell adhesion and migration. J. Math. Biol., 58(1), 135–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Laude, A. J., & Prior, I. A. (2004). Plasma membrane microdomains: Organization, function and trafficking (review). Mol. Membr. Biol., 21(3), 193–205.

    Article  Google Scholar 

  • Lee, J., Leonard, M., Oliver, T., Ishihara, A., & Jacobson, K. (1994). Traction forces generated by locomoting keratocytes. J. Cell Biol., 127(6), 1957–1964.

    Article  Google Scholar 

  • Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., & Hrynkiewicz, A. Z. (1999). Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J., 28(4), 312–316.

    Article  Google Scholar 

  • Machacek, M., & Danuser, G. (2006). Morphodynamic profiling of protrusion phenotypes. Biophys. J., 90(4), 1439–1452.

    Article  Google Scholar 

  • Marella, S. V., & Udaykumar, H. S. (2004). Computational analysis of the deformability of leukocytes modeled with viscous and elastic structural components. Phys. Fluids, 16(2), 244–264.

    Article  Google Scholar 

  • Mitchell, J. S., Kanca, O., & McIntyre, B. W. (2002). Lipid microdomain clustering induces a redistribution of antigen recognition and adhesion molecules on human t lymphocytes. J. Immunol., 168(6), 2737–2744.

    Google Scholar 

  • Mogilner, A., & Edelstein-Keshet, L. (2002). Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J., 83, 1237–1258.

    Article  Google Scholar 

  • Mogilner, A., Marland, E., & Bottino, D. (2000). A minimal model of locomotion applied to the steady gliding movement of fish keratocyte cells. In P. K. Maini & H. G. Othmer (Eds.), IMA vol. math. appl., Frontiers in application of mathematics : Vol. 121. Mathematical models for biological pattern formation (pp. 269–294). New York: Springer.

    Google Scholar 

  • Mogilner, A., & Verzi, D. (2003). A simple 1-D physical model for the crawling nematode sperm cell. J. Stat. Phys., 110, 1169–1189.

    Article  MATH  Google Scholar 

  • Pollard, T., Blanchoin, L., & Mullins, R. D. (2000). Biophysics of actin filament dynamics in nonmuscle cells. Ann. Rev. Biophys. Biomol. Struct., 29, 545–576.

    Article  Google Scholar 

  • Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M., & Danuser, G. (2004). Two distinct actin networks drive the protrusion of migrating cells. Science, 305(5691), 1782–1786.

    Article  Google Scholar 

  • Ream, R. A., Theriot, J. A., & Somero, G. N. (2003). Influences of thermal acclimation and acute temperature change on the motility of epithelial wound-healing cells (keratocytes) of tropical, temperate and antarctic fish. J. Exp. Biol., 206(24), 4539–4551.

    Article  Google Scholar 

  • Reynolds, A. R., Tischer, C., Verveer, P. J., Rocks, O., & Bastiaens, P. I. H. (2003). Egfr activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat. Cell Biol., 5(5), 447–453.

    Article  Google Scholar 

  • Rubinstein, B., Fournier, M. F., Jacobson, K., Verkhovsky, A. B., & Mogilner, A. (2009). Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys. J., 97(7), 1853–1863.

    Article  Google Scholar 

  • Sacan, A., Ferhatosmanoglu, H., & Coskun, H. (2008). Celltrack: an open-source software for cell tracking and motility analysis. Bioinformatics, 24(14), 1647–1649.

    Article  Google Scholar 

  • Schmid-Schönbein, G., Kosawada, T., Skalak, R., & Chien, S. (1995). Membrane model of endothelial cells and leukocytes. A proposal for the origin of a cortical stress. J. Biomech. Eng., 117, 171–178.

    Article  Google Scholar 

  • Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol., 1(1), 31–39.

    Article  Google Scholar 

  • Vallotton, P., & Small, J. V. (2009). Shifting views on the leading role of the lamellipodium in cell migration: speckle tracking revisited. J. Cell Sci., 122(12), 1955–1958.

    Article  Google Scholar 

  • Vallotton, P., Danuser, G., Bohnet, S., Meister, J. J., & Verkhovsky, A. B. (2005). Tracking retrograde flow in keratocytes: News from the front. Mol. Biol. Cell, 16(3), 1223–1231.

    Article  Google Scholar 

  • Ward, K., Li, W., Zimmer, S., & Davis, T. (1991). Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation. Biorheology, 28(3–4), 301–313.

    Google Scholar 

  • Wottawah, F., Schinkinger, S., Lincoln, B., Ebert, S., Mooller, K., Sauer, F., Travis, K., & Guck, J. (2005). Characterizing single suspended cells by optorheology. Acta Biomater., 1(3), 263–271.

    Article  Google Scholar 

  • Yanai, M., Butler, J. P., Suzuki, T., Sasaki, H., & Higuchi, H. (2004). Regional rheological differences in locomoting neutrophils. Am. J. Physiol. Cell Physiol., 287, C603–C611.

    Article  Google Scholar 

  • Yeung, A., & Evans, E. (1989). Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J., 56, 139–149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Coskun.

Electronic Supplementary Material

Annotated PtK1 epithelial cell membrane motion shows the relation between displacement and polymerization or depolymerization (MOV 794 KB)

Annotated PtK1 epithelial cell membrane local motion (i=47,…,53) shows the relation between displacement and polymerization or depolymerization (MOV 457 KB)

Annotated PtK1 epithelial cell (lamellipodium) membrane motion (MOV 1.26 MB)

Annotated PtK1 epithelial cell lamella (transition) line motion (MOV 1.06 MB)

Annotated PtK1 epithelial cell treated with CytD (MOV 1.05 MB)

Annotated movie of a neutrophil chasing bacteria (MOV 703 KB)

Annotated movie of a keratocyte (MOV 319 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coskun, H., Coskun, H. Cell Physician: Reading Cell Motion. Bull Math Biol 73, 658–682 (2011). https://doi.org/10.1007/s11538-010-9580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9580-x

Keywords

Navigation