Skip to main content

Advertisement

Log in

Multiple Limit Cycles in a Gause Type Predator–Prey Model with Holling Type III Functional Response and Allee Effect on Prey

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This work aims to examine the global behavior of a Gause type predator–prey model considering two aspects: (i) the functional response is Holling type III and, (ii) the prey growth is affected by the Allee effect. We prove the origin of the system is an attractor equilibrium point for all parameter values. It has also been shown that it is the ω-limit of a wide set of trajectories of the system, due to the existence of a separatrix curve determined by the stable manifold of the equilibrium point (m,0), which is associated to the Allee effect on prey. When a weak Allee effect on the prey is assumed, an important result is obtained, involving the existence of two limit cycles surrounding a unique positive equilibrium point: the innermost cycle is unstable and the outermost stable. This property, not yet reported in models considering a sigmoid functional response, is an important aspect for ecologists to acknowledge as regards the kind of tristability shown here: (1) the origin; (2) an interior equilibrium; and (3) a limit cycle of large amplitude. These models have undoubtedly been rather sensitive to disturbances and require careful management in applied conservation and renewable resource contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angulo, E., Roemer, G. W., Berec, L., Gascoigne, J., & Courchamp, F. (2007). Double Allee effects and extinction in the island fox. Conserv. Biol., 21, 1082–1091.

    Article  Google Scholar 

  • Arrowsmith, D. K., & Place, C. M. (1992). Dynamical systems. Differential equations, maps and chaotic behaviour. London: Chapman and Hall.

    MATH  Google Scholar 

  • Bazykin, A. D. (1998). Nonlinear dynamics of interacting populations. Singapore: World Scientific.

    Book  Google Scholar 

  • Bazykin, A. D., Berezovskaya, F. S., Isaev, A. S., & Khlebopros, R. G. (1997). Dynamics of forest insect density: Bifurcation approach. J. Theor. Biol., 186, 267–278.

    Article  Google Scholar 

  • Berec, L., Angulo, E., & Courchamp, F. (2007). Multiple Allee effects and population management. Trends Ecol. Evol., 22, 185–191.

    Article  Google Scholar 

  • Boukal, D. S., & Berec, L. (2002). Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters. J. Theor. Biol., 218, 375–394.

    Article  MathSciNet  Google Scholar 

  • Boukal, D. S., Sabelis, M. W., & Berec, L. (2007). How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theor. Popul. Biol., 72, 136–147.

    Article  MATH  Google Scholar 

  • Chicone, C. (2006). Texts in applied mathematics : Vol. 34. Ordinary differential equations with applications. Berlin: Springer.

    MATH  Google Scholar 

  • Clark, C. W. (1990). Mathematical bioeconomic: The optimal management of renewable resources (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Clark, C. W. (2007). The worldwide crisis in fisheries: Economic models and human behavior. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Coleman, C. S. (1983). Hilbert’s 16th problem: How many cycles? In M. Braun, C. S. Coleman, & D. Drew (Eds.), Differential equations model (pp. 279–297). Berlin: Springer.

    Google Scholar 

  • Conway, E. D., & Smoller, J. A. (1986). Global analysis of a system of predator–prey equations. SIAM J. Appl. Math., 46, 630–642.

    Article  MathSciNet  MATH  Google Scholar 

  • Courchamp, F., Clutton-Brock, T., & Grenfell, B. (1999). Inverse dependence and the Allee effect. Trends Ecol. Evol., 14, 405–410.

    Article  Google Scholar 

  • Courchamp, F., Berec, L., & Gascoigne, J. (2008). Allee effects in ecology and conservation. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Dennis, B. (1989). Allee effects: population growth, critical density, and the chance of extinction. Natural Resour. Model., 3, 481–538.

    MathSciNet  MATH  Google Scholar 

  • Dumortier, F., Llibre, J., & Artés, J. C. (2006). Qualitative theory of planar differential systems. Berlin: Springer.

    MATH  Google Scholar 

  • Flores, J. D., Mena-Lorca, J., González-Yañez, B., & González-Olivares, E. (2007). Consequences of depensation in a Smith’s bioeconomic model for open-access fishery. In R. Mondaini & R. Dilao (Eds.), Proceedings of international symposium on mathematical and computational biology (pp. 219–232). E-papers Serviços Editoriais Ltda.

  • Freedman, H. I. (1980). Deterministic mathematical model in population ecology. New York: Dekker.

    Google Scholar 

  • Gaiko, V. A. (2003). Mathematics and its applications : Vol. 559. Global bifurcation theory and Hilbert’s sixteenth problem. Dordrecht: Kluwer Academic.

    MATH  Google Scholar 

  • Getz, W. M. (1996). A hypothesis regarding the abruptness of density dependence and the growth rate populations. Ecology, 77, 2014–2026.

    Article  Google Scholar 

  • Goh, B.-S. (1980). Management and analysis of biological populations. Amsterdam: Elsevier.

    Google Scholar 

  • González-Olivares, E., González-Yañez, B., Sáez, E., & Szantó, I. (2006). On the number of limit cycles in a predator prey model with non-monotonic functional response. Discrete Contin. Dyn. Syst., 6, 525–534.

    Article  MATH  Google Scholar 

  • González-Olivares, E., González-Yañez, B., Mena-Lorca, J., & Ramos-Jiliberto, R. (2007). Modelling the Allee effect: are the different mathematical forms proposed equivalents? In R. Mondaini (Ed.), Proceedings of international symposium on mathematical and computational biology (pp. 53–71). E-papers Serviços Editoriais Ltda.

  • González-Olivares, E., Meneses-Alcay, H., González-Yañez, B., Mena-Lorca, J., Rojas-Palma, A., & Ramos-Jiliberto, R. (2010). Multiple stability and uniqueness of limit cycle in a Gause-type predator–prey model considering Allee effect on prey. Nonlinear Anal. Real World Appl. (submitted).

  • González-Olivares, E., Mena-Lorca, J., Rojas-Palma, A., & Flores, J. D. (2011). Dynamical complexities in the Leslie-Gower predator–prey model as consequences of the Allee effect on prey. Appl. Math. Model., 35, 366–381.

    Article  MathSciNet  MATH  Google Scholar 

  • González-Yañez, B., & González-Olivares, E. (2004). Consequences of Allee effect on a Gause type predator–prey model with nonmonotonic functional response. In R. Mondaini (Ed.), Proceedings of the third Brazilian symposium on mathematical and computational biology (Vol. 2, pp. 358–373). Río de Janeiro: E-Papers Serviços Editoriais Ltda.

    Google Scholar 

  • Hasík, K. (2010). On a predator–prey system of Gause type. J. Math. Biol., 60, 59–74.

    Article  MathSciNet  Google Scholar 

  • Hesaaraki, M., & Moghadas, S. M. (1999). Nonexistence of limit cycles in a predator–prey system with a sigmoid functional response. Can. Appl. Math. Q., 7(4), 1–8.

    MathSciNet  Google Scholar 

  • Huang, X.-C., & Zhu, L. (2005). Limit cycles in a general Kolmogorov model. Nonlinear Anal., 60, 1393–1414.

    Article  MathSciNet  MATH  Google Scholar 

  • Kot, M. (2001). Elements of mathematical biology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kuang, Y. (1988). Nonuniqueness of limit cycles of Gause-type predator–prey systems. Appl. Anal., 29, 269–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuang, Y., & Freedman, H. I. (1988). Uniqueness of limit cycles in Gause type models of predator–prey systems. Math. Bioci., 88, 67–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Liermann, M., & Hilborn, R. (2001). Depensation: evidence, models and implications. Fish Fish., 2, 33–58.

    Google Scholar 

  • Ludwig, D., Jones, D. D., & Holling, C. S. (1978). Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol., 36, 204–221.

    Google Scholar 

  • Middlemas, S. J., Barton, T. R., Armstrong, J. D., & Thompson, P. M. (2006). Functional and aggregative responses of harbour seals to changes in salmonid abundance. Proc. R. Soc. B, 273, 193–198.

    Article  Google Scholar 

  • Moghadas, S. M., & Corbett, B. D. (2008). Limit cycles in a generalized Gause-type predator–prey model. Chaos Solitons Fractals, 37, 1343–1355.

    Article  MathSciNet  MATH  Google Scholar 

  • Murdoch, W. W., Briggs, C. J., & Nisbet, R. M. (2003). Monographs in population biology : Vol. 36. Consumer-resources dynamics. Princeton: Princeton University Press.

    Google Scholar 

  • Rojas-Palma, A., González-Olivares, E., & González-Yañez, B. (2007). Metastability in a Gause type predator–prey models with sigmoid functional response and multiplicative Allee effect on prey. In R. Mondaini (Ed.), Proceedings of international symposium on mathematical and computational biology (pp. 295–321). E-papers Serviços Editoriais Ltda.

  • Schenk, D., & Bacher, S. (2002). Functional response of a generalist insect predator to one of its prey species in the field. J. Anim. Ecol., 71, 524–531.

    Article  Google Scholar 

  • Spencer, P. D., & Collie, J. S. (1995). A simple predator–prey model of exploited marine fish populations incorporating alternative prey. ICES J. Mar. Sci., 53, 615–628.

    Article  Google Scholar 

  • Stephens, P. A., & Sutherland, W. J. (1999). Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol., 14, 401–405.

    Article  Google Scholar 

  • Sugie, J., & Katayama, M. (1999). Global asymptotic stability of a predator–prey system of Holling type. Nonlinear Anal., 38, 105–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Sugie, J., Miyamoto, K., & Morino, K. (1996). Absence of limits cycle of a predator–prey system with a sigmoid functional response. Appl. Math. Lett., 9, 85–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Sugie, J., Kohno, R., & Miyazaki, R. (1997). On a predator–prey system of Holling type. Proc. Am. Math. Soc., 125, 2041–2050.

    Article  MathSciNet  MATH  Google Scholar 

  • Turchin, P. (2003). Mongraphs in population biology : Vol. 35. Complex population dynamics. A theoretical/empirical synthesis. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • van Baalen, M., Krivan, V., van Rijn, P. C. J., & Sabelis, M. W. (2001). Alternative food, switching predators, and the persistence of predator–prey systems. Am. Nat., 157, 1–13.

    Article  Google Scholar 

  • van Voorn, G. A. K., Hemerik, L., Boer, M. P., & Kooi, B. W. (2007). Heteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effect. Math. Biosci., 209, 451–469.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, G., Liang, X.-G., & Wang, F.-Z. (1999). The competitive dynamics of populations subject to an Allee effect. Ecol. Model., 124, 183–192.

    Article  Google Scholar 

  • Wang, M.-H., & Kot, M. (2001). Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci., 171, 83–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W., & Sun, J.-H. (2007). On the predator–prey system with Holling-(n + 1) functional response. Acta Math. Sin. Engl. Ser., 23, 1–6.

    Article  MathSciNet  Google Scholar 

  • Wang, J., Shi, J., & Wei, J. (2010). Predator–prey system with strong Allee effect in prey. J. Math. Biol., doi:10.1007/s00285-010-0332-1.

  • Wolfram Research (1988). Mathematica: A system for doing mathematics by computer.

  • Xiao, D., & Zhang, Z. (2003). On the uniqueness and nonexistence of limit cycles for predator–prey systems. Nonlinearity, 16, 1185–1201.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo González-Olivares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Olivares, E., Rojas-Palma, A. Multiple Limit Cycles in a Gause Type Predator–Prey Model with Holling Type III Functional Response and Allee Effect on Prey. Bull Math Biol 73, 1378–1397 (2011). https://doi.org/10.1007/s11538-010-9577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9577-5

Keywords

Navigation