Skip to main content
Log in

Modelling Foot-and-Mouth Disease Virus Dynamics in Oral Epithelium to Help Identify the Determinants of Lysis

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Foot-and-mouth disease virus (FMDV) causes an economically important disease of cloven-hoofed livestock; of interest here is the difference in lytic behaviour that is observed in bovine epithelium. On the skin around the feet and tongue, the virus rapidly replicates, killing cells, and resulting in growing lesions, before eventually being cleared by the immune response. In contrast, there is usually minimal lysis in the soft palate, but virus may persist in tissue long after the animal has recovered from the disease. Persistence of virus has important implications for disease control, while identifying the determinant of lysis in epithelium is potentially important for the development of prophylactics. To help identify which of the differences between oral and pharyngeal epithelium are responsible for such dramatically divergent FMDV dynamics, a simple model has been developed, in which virus concentration is made explicit to allow the lytic behaviour of cells to be fully considered. Results suggest that localised structuring of what are fundamentally similar cells can induce a bifurcation in the behaviour of the system, explicitly whether infection can be sustained or results in mutual extinction, although parameter estimates indicate that more complex factors may be involved in maintaining viral persistence, or that there are as yet unquantified differences between the intrinsic properties of cells in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandersen, S., Zhang, Z., Donaldson, A. I., & Garland, A. J. M. (2003). The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol., 129, 1–36.

    Article  Google Scholar 

  • Anon (1986). Foot-and-mouth disease: Ageing of lesions. Reference book 400, Her Majesty’s Stationary Office, London.

  • Baranowski, E., Sevilla, N., Verdaguer, N., Ruiz-Jarabo, C. M., Beck, E., & Domingo, E. (1998). Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J. Virol., 72, 6362–6372.

    Google Scholar 

  • Barnett, P. V., & Cox, S. J. (1999). The role of small ruminants in the epidemiology and transmission of foot-and-mouth disease. Veterinary J., 158, 6–13.

    Article  Google Scholar 

  • Brown, J. K., Mcaleese, S. M., Thornton, E. M., Pate, J. A., Schock, A., Macrae, A. I., Scott, P. R., Miller, H. R. P., & Collie, D. D. S. (2006). Integrin αvβ6, a putative receptor for foot-and-mouth disease virus, is constitutively expressed in ruminant airways. J. Histochem. Cytochem., 54, 807.

    Article  Google Scholar 

  • Bustad, L. K., & McClellan, R. O. (1965). Use of pigs in biomedical research. Nature, 208, 531–535.

    Article  Google Scholar 

  • Dawe, P. S., Flanagan, F. O., Madekurozwa, R. L., Sorensen, K. J., Anderson, E. C., Foggin, C. M., Ferris, N. P., & Knowles, N. J. (1994). Natural transmission of foot-and-mouth disease virus from African buffalo (Syncerus caffer) to cattle in a wildlife area of Zimbabwe. Veterinary Rec., 134, 230–232.

    Article  Google Scholar 

  • de Boer, C. J., & Bachrach, H. L. (1961). The multiplication of foot-and-mouth disease virus in trypsinized calf kidney and tongue cells and its use as immunizing and complement-fixing antigens. J. Immunol., 86, 282.

    Google Scholar 

  • Durand, S., Murphy, C., Zhang, Z., & Alexandersen, S. (2008). Epithelial distribution and replication of foot-and-mouth disease virus rna in infected pigs. J. Comp. Pathol., 139, 86–96.

    Article  Google Scholar 

  • Escarmis, C., Carrillo, E. C., Ferrer, M., Arriaza, J. F. G., Lopez, N., Tami, C., Verdaguer, N., Domingo, E., & Franze-Fernandez, M. T. (1998). Rapid selection in modified BHK-21 cells of a foot-and-mouth disease virus variant showing alterations in cell tropism. J. Virol., 72, 10171–10179.

    Google Scholar 

  • Fields, B. N., Knipe, D. M., Howley, P. M., & Griffin, D. E. (2007). Fields’ virology (5th ed.). Lippincott Williams & Wilkins

  • Garcia-Arriaza, J., Manrubia, S. C., Toja, M., Domingo, E., & Escarmis, C. (2004). Evolutionary transition toward defective RNAS that are infectious by complementation. J. Virol., 78, 11678–11685.

    Article  Google Scholar 

  • Gibbs, S., & Ponec, M. (2000). Intrinsic regulation of differentiation markers in human epidermis, hard palate and buccal mucosa. Arch. Oral Biol., 45, 149–158.

    Article  Google Scholar 

  • Girard, S., Couderc, T., Destombes, J., Thiesson, D., Delpeyroux, F., & Blondel, B. (1999). Poliovirus induces apoptosis in the mouse central nervous system. J. Virol., 73, 6066.

    Google Scholar 

  • Grubman, M. J., & Baxt, B. (2004). Foot-and-mouth disease. Clin. Microbiol. Rev., 17, 465–493.

    Article  Google Scholar 

  • Hohl, D., Olano, B. R., Viragh, P. A., Huber, M., Detrisac, C. J., Schnyder, U. W., & Roop, D. R. (1993). Expression patterns of loricrin in various species and tissues. Differentiation, 54, 25–34.

    Google Scholar 

  • Howey, R., Quan, M., Savill, N. J., Matthews, L., Alexandersen, S., & Woolhouse, M. E. J. (2008). Effect of the initial dose of foot-and-mouth disease virus on early viral dynamics within pigs. J. R. Soc. Interface. doi: 10.1098/rsif.2008.0434.

    Google Scholar 

  • Jin, H., Xiao, C., Zhao, G., Du, X., Yu, Y., Kang, Y., & Wang, B. (2007). Induction of immature dendritic cell apoptosis by foot and mouth disease virus is an integrin receptor mediated event before viral infection. J. Cell. Biochem., 102, 980–991.

    Article  Google Scholar 

  • Keeling, M. J. (2005). Models of foot-and-mouth disease. Proc. R. Soc. B—Biol. Sci., 272, 1195–1202.

    Article  Google Scholar 

  • Kitching, P., Hammond, J., Jeggo, M., Charleston, B., Paton, D., Rodriguez, L., & Heckert, R. (2007). Global FMD control—is it an option? Vaccine, 25, 5660–5664.

    Article  Google Scholar 

  • Krakauer, D. C., & Komarova, N. L. (2003). Levels of selection in positive-strand virus dynamics. J. Evol. Biol., 16, 64–73.

    Article  Google Scholar 

  • Monaghan, P., Cook, H., Hawes, P., Simpson, J., & Tomley, F. (2003). High-pressure freezing in the study of animal pathogens. J. Microsc., 212, 62–70.

    Article  MathSciNet  Google Scholar 

  • Monaghan, P., Cook, H., Jackson, T., Ryan, M., & Wileman, T. (2004). The ultrastructure of the developing replication site in foot-and-mouth disease virus-infected BHK-38 cells. J. Gen. Virol., 85, 933–46.

    Article  Google Scholar 

  • Monaghan, P., Gold, S., Simpson, J., Zhang, Z., Weinrab, P. H., Violette, S. M., Alexandersen, S., & Jackson, T. (2005). The avb6 integrin receptor for FMDV is expressed constitutively on the epithelial cells targeted in cattle. J. Gen. Virol., 86, 2769–2780.

    Article  Google Scholar 

  • Moore, J. V. (1987). Death of cells and necrosis in tumours. In C. S. Potten (Ed.), Perspectives in mammalian cell death. Oxford: University Press.

    Google Scholar 

  • Mueller, S., Papamichail, D., Coleman, J. R., Skiena, S., & Wimmer, E. (2006). Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J. Virol., 80, 9687–9696.

    Article  Google Scholar 

  • Parida, S., Cox, S. J., Reid, S. M., Hamblin, P., Barnett, P. V., Inoue, T., Anderson, J., & Paton, D. J. (2005). The application of new techniques to the improved detection of persistently infected cattle after vaccination and contact exposure to foot-and-mouth disease. Vaccine, 23, 5186–95.

    Article  Google Scholar 

  • Peng, J., Liang, S., & Liang, C. (2004). VP1 of foot-and-mouth disease virus induces apoptosis via the Akt signaling pathway. J. Biol. Chem., 279, 52168.

    Article  Google Scholar 

  • Pengyan, W., Yan, R., Zhiru, G., & Chuangfu, C. (2008). Inhibition of foot-and-mouth disease virus replication in-vitro and in-vivo by small interfering RNA. Virol. J., 5, 86.

    Article  Google Scholar 

  • Potten, C. S., Booth, D., Cragg, N. J., Tudor, G. L., O’Shea, J. A., Appleton, D., Barthel, D., Gerike, T. G., Meineke, F. A., & Loeffler, M. (2002a). Cell kinetic studies in the murine ventral tongue epithelium: thymidine metabolism studies and circadian rhythm determination. Cell Prolif., 35, 1–15.

    Article  Google Scholar 

  • Potten, C. S., Booth, D., Cragg, N. J., Tudor, G. L., O’Shea, J. A., Booth, C., Meineke, F. A., Barthel, D., & Loeffler, M. (2002b). Cell kinetic studies in the murine ventral tongue epithelium: mucositis induced by radiation and its protection by pretreatment with keratinocyte growth factor(KGF). Cell Prolif., 35, 32–47.

    Article  Google Scholar 

  • Quan, M. (2005). Quantitative dynamics of foot-and-mouth disease virus infection in pigs. University of Edinburgh.

  • Rowat, J. S., & Squier, C. A. (1986). Rates of epithelial cell proliferation in the oral mucosa and skin of the tamarin monkey (Saguinus fuscicollis). J. Dent. Res., 65, 1326–1331.

    Article  Google Scholar 

  • Saiz, M., Nunez, J. I., Jimenez-Clavero, M. A., Baranowski, E., & Sobrino, F. (2002). Foot-and-mouth disease virus: biology and prospects for disease control. Microbes Infect., 4, 1183–1192.

    Article  Google Scholar 

  • Sobrino, F., & Domingo, E. (2004). Foot and mouth disease: current perspectives. Foot and Mouth Disease: Current Perspectives.

  • Thorne, H. V. (1962). Kinetics of cell infection and penetration by the virus of foot-and-mouth disease. J. Bacteriol., 84, 929.

    Google Scholar 

  • Winning, T. A., & Townsend, G. C. (2000). Oral mucosal embryology and histology. Clin. Dermatol., 18, 499–511.

    Article  Google Scholar 

  • Zhang, Z., & Alexandersen, S. (2004). Quantitative analysis of foot-and-mouth disease virus RNA loads in bovine tissues: implications for the site of viral persistence. J. Gen. Virol., 85, 2567.

    Article  Google Scholar 

  • Zhang, Z. D., & Kitching, R. P. (2001). The localization of persistent foot and mouth disease virus in the epithelial cells of the soft palate and pharynx. J. Comp. Pathol., 124, 89–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Schley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schley, D., Ward, J. & Zhang, Z. Modelling Foot-and-Mouth Disease Virus Dynamics in Oral Epithelium to Help Identify the Determinants of Lysis. Bull Math Biol 73, 1503–1528 (2011). https://doi.org/10.1007/s11538-010-9576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9576-6

Keywords

Navigation