Skip to main content
Log in

Estimating 3D Movements from 2D Observations Using a Continuous Model of Helical Swimming

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Helical swimming is among the most common movement behaviors in a wide range of microorganisms, and these movements have direct impacts on distributions, aggregations, encounter rates with prey, and many other fundamental ecological processes. Microscopy and video technology enable the automated acquisition of large amounts of tracking data; however, these data are typically two-dimensional. The difficulty of quantifying the third movement component complicates understanding of the biomechanical causes and ecological consequences of helical swimming. We present a versatile continuous stochastic model—the correlated velocity helical movement (CVHM) model—that characterizes helical swimming with intrinsic randomness and autocorrelation. The model separates an organism’s instantaneous velocity into a slowly varying advective component and a perpendicularly oriented rotation, with velocities, magnitude of stochasticity, and autocorrelation scales defined for both components. All but one of the parameters of the 3D model can be estimated directly from a two-dimensional projection of helical movement with no numerical fitting, making it computationally very efficient. As a case study, we estimate swimming parameters from videotaped trajectories of a toxic unicellular alga, Heterosigma akashiwo (Raphidophyceae). The algae were reared from five strains originally collected from locations in the Atlantic and Pacific Oceans, where they have caused Harmful Algal Blooms (HABs). We use the CVHM model to quantify cell-level and strain-level differences in all movement parameters, demonstrating the utility of the model for identifying strains that are difficult to distinguish by other means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt, W. (1988). Modelling of motility in biological systems. In J. McKenna & R. Temam (Eds.), ICIAM ’87: Proceedings of the first international conference on industrial and applied mathematics (pp. 15–30). Philadelphia: SIAM.

    Google Scholar 

  • Bearon, R. N., Grünbaum, D., & Cattolico, R. A. (2006). Effects of salinity structure on swimming behavior and harmful algal bloom formation in Heterosigma akashiwo, a toxic raphidophyte. Mar. Ecol. Prog. Ser., 306, 153–163.

    Article  Google Scholar 

  • Bearon, R. N., Grünbaum, D., & Cattolico, R. A. (2004). Relating cell-level swimming behaviors to vertical population distributions in Heterosigma akashiwo (Raphidophyceae), a harmful alga. Limnol. Oceanogr., 49(2), 607–613.

    Article  Google Scholar 

  • Bearon, R. N., & Grünbaum, D. (2008). From individual behaviour to population models: a case study using swimming algae. J. Theor. Biol., 251(4), 679–697.

    Article  Google Scholar 

  • Connell, L. (2000). Nuclear ITS region of the alga Heterosigma akashiwo (Chromophyta: Raphidophyceae) is identical in isolates from Atlantic and Pacific basins. Mar. Biol., 136(6), 953–960.

    Article  Google Scholar 

  • Crenshaw, H. (1993). Orientation by helical motion—I. Kinematics of the helical motion of organisms with up to six degrees of freedom. Bull. Math. Biol., 55(1), 197–212.

    MATH  Google Scholar 

  • Crenshaw, H. (1996). A new look at locomotion in microorganisms: rotating and translating. Integr. Comp. Biol., 36(6), 608–618.

    Article  Google Scholar 

  • Crenshaw, H., Ciampaglio, C., & McHenry, M. (2000). Analysis of the three-dimensional trajectories of organisms: estimates of velocity, curvature and torsion from positional information. J. Exp. Biol., 203(6), 961–982.

    Google Scholar 

  • Cryer, J., & Chan, K. (2008). Time series analysis: with applications in R. Berlin: Springer.

    MATH  Google Scholar 

  • Dunn, G. A., & Brown, A. F. (1987). A unified approach to analysing cell motility. J. Cell Sci. Suppl., 8, 81–102.

    Google Scholar 

  • Franks, P. J. S. (1997). Models of harmful algal blooms. Limnol. Oceanogr., 42, 1273–1282.

    Article  Google Scholar 

  • Gurarie, E., Anderson, J. J., & Zabel, R. W. (2009a). Incorporating population heterogeneity into analysis of animal dispersal and movement. Ecology, 90(8), 2233–2242.

    Article  Google Scholar 

  • Gurarie, E., Andrews, R. D., & Laidre, K. L. (2009b). A novel method for identifying behavioural changes in animal movement data. Ecol. Lett., 12(5), 395–408.

    Article  Google Scholar 

  • Han, M., Kim, Y., & Cattolico, R. (2002). Heterosigma akashiwo (Raphidophyceae) resting cell formation in batch culture: strain identity versus physiological response. J. Phychol., 38(2), 304–317.

    Google Scholar 

  • Helms, J., & Munzel, U. (2008). npmc: Nonparametric multiple comparisons (R package version 1.0-7).

  • Hosaka, M. (1992). Growth characteristics of a strain of Heterosigma akashiwo (Hada) isolated from Tokyo Bay, Japan. Bull. Plankton Soc. Jpn., 39, 49–58.

    Google Scholar 

  • Jennings, H. (1901). On the significance of the spiral swimming of organisms. Am. Nat., 35(413), 369–378.

    Article  Google Scholar 

  • Johnson, D. S., London, J. M., Lea, M.-A., & Durban, J. W. (2008). Continuous-time correlated random walk model for animal telemetry data. Ecology, 89(5), 1208–1215.

    Article  Google Scholar 

  • Kessler, J. O. (1985a). Co-operative and concentrative phenomena of swimming micro-organisms. Contemp. Phys., 26(2), 147–166.

    Article  Google Scholar 

  • Kessler, J. O. (1985b). Hydrodynamic focusing of motile algal cells. Nature, 313(5999), 218–220.

    Article  Google Scholar 

  • Ki, J., & Han, M. (2007). Nuclear rDNA and chloroplast rbcL, rbcS and IGS sequence data, and their implications from the Japanese, Korean, and North American harmful algae, Heterosigma akashiwo (Raphidophyceae). Environ. Res., 103(3), 299–304.

    Article  Google Scholar 

  • Liu, G., Janowitz, G., & Kamykowski, D. (2001). A biophysical model of population dynamics of the autotrophic dinoflagellate Gymnodinium breve. Mar. Ecol. Prog. Ser., 210, 101–124.

    Article  Google Scholar 

  • Menden-Deuer, S., & Grünbaum, D. (2006). Individual foraging behaviors and population distributions of a planktonic predator aggregating to phytoplankton thin layers. Limnol. Oceanogr., 51(1), 109–116.

    Article  Google Scholar 

  • McIntosh, L., & Cattolico, R. (1978). Preservation of algal and higher plant ribosomal RNA integrity during extraction and electrophoretic quantitation. Anal. Biochem., 91(2), 600–612.

    Article  Google Scholar 

  • Mitchell, J. G., Okubo, A., & Fuhrman, J. A. (1990). Gyrotaxis as a new mechanism for generating spatial heterogeneity and migration in microplankton. Limnol. Oceanogr., 35(1), 123–130.

    Article  Google Scholar 

  • Munzel, U., & Hothorn, L. A. (2001). A unified approach to simultaneous rank test procedures in the unbalanced one-way layout. Biom. J., 43(5), 553–569.

    Article  MathSciNet  MATH  Google Scholar 

  • Pedley, T. J., & Kessler, J. O. (1992). Hydrodynamic phenomena in suspensions of swimming microorganisms. Ann. Rev. Fluid Mech., 24, 313–358.

    Article  MathSciNet  Google Scholar 

  • Polin, M., Tuval, I., Drescher, K., Gollub, J., & Goldstein, R. (2009). Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion. Science, 325(5939), 487–490.

    Article  Google Scholar 

  • R Development Core Team (2009). R: A language and environment for statistical computing R foundation for statistical computing (ISBN 3-900051-07-0). Retrieved from http://www.R-project.org.

  • Sheng, J., Malkiel, E., Katz, J., Adolf, J., & Belas, R. (2007). Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates. Proc. Natl. Acad. Sci., 104(44), 17512–17517.

    Article  Google Scholar 

  • Smayda, T. J., Anderson, D. M., Cembella, A. D., & Hallegraeff, G. M. (1998). Ecophysiology and bloom dynamics of Heterosigma akashiwo (Raphidophyceae). In D. M. Anderson, A. D. Cembellas & G. M. Hallegraeff (Eds.), Physiological ecology of harmful algae blooms (Vol. 41, pp. 115–131). Berlin: Springer.

    Google Scholar 

  • Visser, A., & Jonsson, P. (2000). On the reorientation of non-spherical prey particles in a feeding current. J. Plankton Res., 22(4), 761.

    Article  Google Scholar 

  • Watanabe, M., Kohata, K., & Kunugi, M. (1988). Phosphate accumulation and metabolism by Heterosigma akashiwo (Raphidophyceae) during diel vertical migration in a stratified microcosm. J. Phychol., 24(1), 22–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliezer Gurarie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurarie, E., Grünbaum, D. & Nishizaki, M.T. Estimating 3D Movements from 2D Observations Using a Continuous Model of Helical Swimming. Bull Math Biol 73, 1358–1377 (2011). https://doi.org/10.1007/s11538-010-9575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9575-7

Keywords

Navigation